首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of the γ‐form crystal on the thermal fractionation of a commercial poly(propylene‐co‐ethylene) (PPE) has been studied by differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction (WAXD) techniques. Two thermal fractionation techniques, stepwise isothermal crystallization (SIC) and successive self‐nucleation and annealing (SSA), have been used to characterize the molecular heterogeneity of the PPE. The results indicate that the SSA technique possesses a stronger fractionation ability than that of the SIC technique. The heating scan of the SSA fractionated sample exhibits 12 endothermic peaks, whereas the scan of the SIC fractionated sample only shows eight melting peaks. The WAXD observations of the fractionated PPE samples prove that the content of the γ‐form crystals formed during the thermal treatment of the SIC technique is much higher than that of the SSA treatment. The former is 57.4%, whereas the later is 12.6%. The effect of theγ‐form crystals on thermal fractionation ability is discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4320–4325, 2004  相似文献   

2.
Positron annihilation lifetime spectroscopy (PALS), differential scanning calorimetry, X‐ray diffraction, and polarized light optical microscopy were used to study six low molar mass poly(ethylene oxide) samples with average molar masses ranging from 1 × 103 to 10 × 103 g mol?1. Dynamic light scattering was used to determine molar mass and polydispersity rigorously. Polymer samples with 70–95% crystallinity, which is an unusual range in PALS studies, were prepared by molten material quenching. The ortho‐positronium pick‐off lifetime (τ3) and relative fractional free volume (fv), determined by the free volume model, correlated well with the average molar mass and crystallinity of the polymers. X‐ray diffraction and polarized light optical data support the interpretation of positron annihilation results. PALS parameter, I3, which is associated with high cavity content, remained approximately constant at 20–22% for all samples. The cavities are present as crystallite defects in the spherulitic open texture and the amorphous phase for the low crystallinity sample (e.g., for Mw = 1390) and at the interfaces and in interlamellar spherulite regions of the more crystalline materials. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2400–2409, 2007  相似文献   

3.
Lactone ring formation in poly(α‐hydroxyacrylic acid) (PHA) was investigated by means of 1H and 13C NMR. The stereoregularity of PHA was estimated as syndio‐rich (ca. 86%) on the basis of methylene proton peak of the sodium salt, PHANa, in aqueous solution. On the other hand, analyses of the 13C NMR spectra obtained as a function of the degree of dissocation (α) suggested that the lactone ring is formed at every other residue at half dissociation (α = 0.5). This specific way of lactone formation supposed for PHA is discussed in relation to the critical change in the dissociation behavior of the polyacid which has been found at α = 0.5. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1400–1405, 2002  相似文献   

4.
5.
DSC measurements carried out at different heating rates were used for the kinetic analysis of the endothermic process assigned to the denaturation of the helical material from human hair in water excess. We found that the kinetic mechanism is autocatalytic and that the value of the activation energy is close to disulphide bond scission rather than to protein denaturation. This allowed us to propose a multistep mechanism for the thermal denaturation of hard α‐keratins in water excess that relies on the 3‐phase model which describes their structure. The limiting step of the thermal denaturation process is then the scission of S–S bonds between the main morphological components, namely IF and matrix (IFAP). The theoretical proposed model shows a good agreement with the experimental recorded data.

  相似文献   


6.
The structural properties of poly(vinyl acetate) (PVAc) films filled with different levels of MgBr2 or MgCl2 were investigated. Differential scanning calorimetry revealed that, at certain filling levels of MgBr2 or MgCl2, two new transitions appeared. The first one was due to the α relaxation (Tα) associated with a crystalline region, and the second was due to the melting temperature (Tm). This implies that a crystalline phase was formed in the polymeric matrix. Changes occurring in Tα, Tm, and the melting peak area as a function of the filling level were examined. The X‐ray diffraction (XRD) pattern revealed that the pure PVAc film was amorphous. However, the addition of MgBr2 or MgCl2 led to the formation of a crystalline phase in the polymeric matrix that depended on the filling level. XRD also demonstrated that the structural changes depended not only on the metal ions but also on the halide ions. Scanning electron microscopy images for the studied samples were examined. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 112–119, 2003  相似文献   

7.
Poly(vinyl laurate) (PVL) and poly(vinyl stearate) (PVS) were synthesized by means of cobalt‐mediated radical polymerization (CMRP). Cobalt(II) diacetylacetonate (Co(acac)2) was demonstrated to control the radical polymerization of these monomers in solution. Molecular weights up to 15,000 g·mol?1 were obtained with reasonably low polydispersity indices (PDI < 1.3). The efficiency of the redox initiator [lauroyle peroxide (LPO)/citric acid (CA)] was found to be low (around 10%) as already reported for vinyl acetate. The solvent and temperature were found to have a very weak influence on the initiator efficiency. It appeared that CA played no role in the initiation process that only involved a redox reaction between LPO and Co(acac)2. PVL‐b‐PVS diblock copolymers could be synthesized using two strategies: (1) Sequential addition, that is, addition of the second monomer (VS) at high conversion of the first one (VL). (2) Macroinitiator technique, that is, isolation of a PVL macroinitiator then polymerization of VS from this cobalt functionalized macroinitiator. Both techniques allowed the synthesis of diblock copolymers with molar masses around 25,000 g·mol?1 and PDI lower than 1.4. The resulting materials were characterized by DSC, revealing that both blocks exhibit side‐chain crystallinity and phase segregate in the bulk. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
A series of polyurethane hybrid networks have been synthesized using octakis(m‐isoprenyl‐α,α′‐dimethylbenzylisocyanato dimethylsiloxy) octasilsesquioxane (Q8M8TMI) as a crosslinking agent. The formation of the urethane linkages within the polyurethane hybrids was confirmed by photoacoustic FTIR spectroscopy. The TGA and DSC studies demonstrated that the incorporation of the POSS crosslinking agents altered the thermal properties of the polyurethanes, and that this was dependent on the length of the polyethylene glycol chain. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5038–5045  相似文献   

9.
The miscibility and hydrogen‐bonding interactions of carbon dioxide and epoxy propane copolymer to poly(propylene carbonate) (PPC)/poly(p‐vinylphenol) (PVPh) blends were investigated with differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy and X‐ray photoelectron spectroscopy (XPS). The single glass‐transition temperature for each composition showed miscibility over the entire composition range. FTIR indicates the presence of strong hydrogen‐bonding interassociation between the hydroxyl groups of PVPh and the oxygen functional groups of PPC as a function of composition and temperature. XPS results testify to intermolecular hydrogen‐bonding interactions between the oxygen atoms of carbon–oxygen single bonds and carbon–oxygen double bonds in carbonate groups of PPC and the hydroxyl groups of PVPh by the shift of C1s peaks and the evolution of three novel O1s peaks in the blends, which supports the suggestion from FTIR analyses. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1957–1964, 2002  相似文献   

10.
The synthesis and characterization of α,ω‐di(2‐methyl‐2,3‐epoxypropyl)polyisobutylene are reported. The epoxidation of α,ω‐di(isobutenyl)polyisobutylene was achieved at room temperature with dimethyldioxirane, which proved to be a very effective reagent for epoxidation without the formation of byproducts. A very good agreement was found for the conversion determined by 1H NMR and matrix‐assisted laser desorption/ionization mass spectrometry (MALDI HMS). The epoxy end groups were converted quantitatively into aldehyde termini with zinc bromide as a catalyst. The aldehyde groups were then reduced with LiAlH4 into primary hydroxyl functions to obtain α,ω‐di(2‐methyl‐3‐hydroxylpropyl)polyisobutylene with high efficiency. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3974–3986, 2002  相似文献   

11.
The glass transition behavior in athermal blends of poly(α‐methyl styrene) (PaMS) and its hexamer is investigated using differential scanning calorimetry (DSC). The results, along with previous data on similar blends of PaMS/pentamer, are analyzed in the context of the Lodge–McLeish self‐concentration model. A methodology is described to partition the calorimetric transition to obtain effective Tgs for each component of the blend. The dependences of these effective Tgs on overall blend composition are described by the Lodge–McLeish model, although the self‐concentration effect is less than expected based on the Kuhn length. The length scales of the cooperatively rearranging regions for the two components in the blends are also calculated adapting Donth's fluctuation model to the partitioned DSC transitions and are found to be similar for the two components and show a slight decrease at intermediate concentrations. The kinetics associated with the glass temperature, Tg, is examined by studying the cooling rate dependence of Tg for the pure components and the blends, as well as by examining the enthalpy overshoots in the heating DSC scans. It is observed that the cooling rate dependence of Tg in PaMS/hexamer blends at intermediate concentrations is similar to that of the hexamer, indicating that the kinetics of the glass transition for blends is dominated by the high mobility oligomeric component. Moreover, compared to the pure materials, the PaMS/hexamer blends exhibit a considerably depressed enthalpy overshoot, presumably resulting from their broader relaxation time distribution. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 418–430, 2008  相似文献   

12.
Linear and four‐armed poly(l ‐lactide)‐block‐poly(d ‐lactide) (PLLA‐b‐PDLA) block copolymers are synthesized by ring‐opening polymerization of d ‐lactide on the end hydroxyl of linear and four‐armed PLLA prepolymers. DSC results indicate that the melting temperature and melting enthalpies of poly (lactide) stereocomplex in the copolymers are obviously lower than corresponding linear and four‐armed PLLA/PDLA blends. Compared with the four‐armed PLLA‐b‐PDLA copolymer, the similar linear PLLA‐b‐PDLA shows higher melting temperature (212.3 °C) and larger melting enthalpy (70.6 J g?1). After these copolymers blend with additional neat PLAs, DSC, and WAXD results show that the stereocomplex formation between free PLA molecular chain and enantiomeric PLA block is the major stereocomplex formation. In the linear copolymer/linear PLA blends, the stereocomplex crystallites (sc) as well as homochiral crystallites (hc) form in the copolymer/PLA cast films. However, in the four‐armed copolymer/linear PLA blends, both sc and hc develop in the four‐armed PLLA‐b‐PDLA/PDLA specimen, which means that the stereocomplexation mainly forms between free PDLA molecule and the inside PLLA block, and the outside PDLA block could form some microcrystallites. Although the melting enthalpies of stereocomplexes in the blends are smaller than that of neat copolymers, only two‐thirds of the molecular chains participate in the stereocomplex formation, and the crystallization efficiency strengthens. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1560–1567  相似文献   

13.
A series of narrowly distributed poly(N‐isopropylacrylamide) (PNIPAM) with molecular weight ranging from 8 × 104 to 2.3 × 107 g/mol were prepared by a combination of free radical polymerization and fractional precipitation. An ultrasensitive differential scanning calorimetry was used to study the effect of molecular weight on the thermal volume transition of these PNIPAM samples. The specific heat peak of the transition temperature (Tp,0) was obtained by extrapolation to zero heating rate (HR) because of the linear dependence of the transition temperature (Tp) on the HR. The relation between Tp,0 and the degree of polymerization (N) was investigated. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1388–1393, 2010  相似文献   

14.
15.
A new series of segmented copolymers were synthesized from poly(ethylene terephthalate) (PET) oligomers and poly(ethylene glycol) (PEG) by a two‐step solution polymerization reaction. PET oligomers were obtained by glycolysis depolymerization. Structural features were defined by infrared and nuclear magnetic resonance (NMR) spectroscopy. The copolymer composition was calculated via 1H NMR spectroscopy. The content of soft PEG segments was higher than that of hard PET segments. A single glass‐transition temperature was detected for all the synthesized segmented copolymers. This observation was found to be independent of the initial PET‐to‐PEG molar ratio. The molar masses of the copolymers were determined by gel permeation chromatography (GPC). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4448–4457, 2004  相似文献   

16.
Even though poly(ethylene oxide) (PEO) is immiscible with both poly(l ‐lactide) (PLLA) and poly(vinyl alcohol) (PVA), this article shows a working route to obtain miscible blends based on these polymers. The miscibility of these polymers has been analyzed using the solubility parameter approach to choose the proper ratios of the constituents of the blend. Then, PVA has been grafted with l ‐lactide (LLA) through ring‐opening polymerization to obtain a poly(vinyl alcohol)‐graft‐poly(l ‐lactide) (PVA‐g‐PLLA) brush copolymer with 82 mol % LLA according to 1H and 13C NMR spectroscopies. PEO has been blended with the PVA‐g‐PLLA brush copolymer and the miscibility of the system has been analyzed by DSC, FTIR, OM, and SEM. The particular architecture of the blends results in DSC traces lacking clearly distinguishable glass transitions that have been explained considering self‐concentration effects (Lodge and McLeish) and the associated concentration fluctuations. Fortunately, the FTIR analysis is conclusive regarding the miscibility and the specific interactions in these systems. Melting point depression analysis suggests that interactions of intermediate strength and PLOM and SEM reveal homogeneous morphologies for the PEO/PVA‐g‐PLLA blends. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1217–1226  相似文献   

17.
The effect of crystallization of a hydrophobic poly(lactide) block on the self-organization of biocompatible and biodegradable amphiphilic poly(lactide)-block-poly(ethylene oxide) (PLA-b-PEO) copolymers in a dilute aqueous solution has been investigated. It was demonstrated that the co-crystallization of poly(L,L-lactide) [P(L,L)LA] and poly(d,d-lactide) [P(d,d)LA] chains under equimolar mixing of P(L,L)LA46-b-PEO113 and P(d,d)LA56-b-PEO113 copolymers resulted in the formation of stable and spontaneously water-redispersible stereocomplex micelles with semicrystalline P(L,L)LA/P(d,d)LA cores. It was shown that the P(L,L)LA46 / P(d,d)LA56-b-PEO113 stereo-complex micelles produced by dialysis can be potential vehicles for the anticancer agent oxaliplatin  相似文献   

18.
An heterofunctional initiator combining two reactive sites for ring opening polymerization and two for atom transfer radical polymerization was used to prepare three A2B2 miktoarm star copolymers of poly(ε‐caprolactone) (PCL) and polystyrene (PS). The morphology and thermal properties were studied by transmission electron microscopy, polarized light optical microscopy, and differential scanning calorimetry. The (PCL)2(PS)2 72/28 (72 wt % PCL) sample was crystallized from a disordered melt. In this case, crystallization drove the structure formation and a lamellar morphology was obtained at the microdomain level, while spherulites were observed at a superstructural level. The other two samples, 39/61 and 27/73, with lower PCL content and higher total molecular weight, were not able to form spherulites. Surprisingly, these miktoarm star copolymers exhibited hexagonally packed cylinders and spheres morphologies, respectively, instead of lamellar and cylindrical morphology. Such unexpected and novel behavior was explained in terms of the higher resistance of the arms to be stretched in a miktoarm star copolymer when compared with the corresponding linear diblocks. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5387–5397, 2007  相似文献   

19.
The effect of uniaxial deformation and subsequent relaxation at ambient temperature on irreversible and reversible crystallization of homogeneous poly(ethylene‐co‐1‐octene) with 38 mol % 1‐octene melt‐crystallized at 10 K min was explored by calorimetry, X‐ray scattering, and Fourier transform infrared spectroscopy. At 298 K, the enthalpy‐based crystallinity of annealed specimens increased irreversibly by stress‐induced crystallization from initially 15% to a maximum of, at least, 19% when a permanent set of more than 200% was attained. The crystallinity increased by formation of crystals of pseudohexagonal structure at the expense of the amorphous polymer, and as a result of destruction of orthorhombic crystals. The stress‐induced increase of crystallinity was accompanied by an increase in the apparent specific heat capacity from 2.44 to about 2.59 J g?1 K?1, which corresponds to an increase of the total reversibility of crystallization from, at least, 0.10 to 0.17% K?1. The specific reversibility calculated for 100% crystallinity increased from 0.67 to 0.89% K?1 and points to a changed local equilibrium at the interface between the crystal and amorphous phases. The deformation resulted in typical changes of the phase structure and crystal morphology that involve orientation and destruction of crystals as well as the formation of fibrils. The effect of the decrease of the entropy of the strained melt on the reversibility of crystallization and melting is discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1223–1235, 2002  相似文献   

20.
The crystallization of isotactic poly(4‐methylpentene‐1) in its stable tetragonal crystal modification based on the 72 helix conformation was achieved on three different low molecular weight organic substrates and on polytetrafluoroethylene. The contact face was always the (100) face, although the details of the epitaxial relationships generated one, two, or even three chain axis orientations in the polymer epitaxial overgrowth. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3088–3097, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号