首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of new reversible addition–fragmentation chain transfer (RAFT) agents with cyanobenzyl R groups were synthesized. In comparison with other dithioester RAFT agents, these new RAFT agents were odorless or low‐odor, and this made them much easier to handle. The kinetics of methyl methacrylate radical polymerizations mediated by these RAFT agents were investigated. The polymerizations proceeded in a controlled way, the first‐order kinetics evolved in a linear fashion with time, the molecular weights increased linearly with the conversions, and the polydispersities were very narrow (~1.1). A poly[(methyl methacrylate)‐block‐polystyrene] block copolymer was prepared (number‐average molecular weight = 42,600, polydispersity index = 1.21) from a poly(methyl methacrylate) macro‐RAFT agent. These new RAFT agents also showed excellent control over the radical polymerization of styrenics and acrylates. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1535–1543, 2005  相似文献   

2.
具有RAFT链转移过程的活性自由基聚合的Monte Carlo模拟   总被引:1,自引:0,他引:1  
活性自由基聚合是近年来高分子合成领域中研究的热点之一 .目前主要有两种体系 ,其一是TEMPO调控的自由基聚合[1],但单体选择面窄 ,聚合速率慢 ;其二是原子转移聚合 ,单体适用面较广 ,但产物中常含有难以除去的金属离子[2 ].因此寻找单体适用性广 ,产物纯净的聚合体系 ,具有十分重要的意义 .近两年来 ,Thang等[36 ]发现用双硫酯调聚的自由基聚合具有活性特征 ,并指出其原因是这类体系中的链转移具有可逆性 ,称为可逆加成 裂解链转移过程 (RAFT) ,可示意如下 :Ri·+ CSZSRj(DSE)kaddkdisC·SRiZSRj…  相似文献   

3.
We extend a new model for the kinetics of reversible addition‐fragmentation chain transfer (RAFT) polymerization. The essence of this model is that the termination of the radical intermediate formed by the RAFT process occurs only with very short oligomeric radicals. In this work, we consider cross‐termination of oligomers up to two monomers and an initiator fragment. This model accounts for the absence of three‐armed stars in the molecular weight distribution, which are predicted by other cross‐termination models, since the short third arm makes a negligible difference to the polymer's molecular weight. The model is tested against experiments on styrene mediated by cyano‐isopropyl dithiobenzoate, and ESR experiments of the intermediate radical concentration. By comparing our model to experiments, we may determine the significance of cross‐termination in RAFT kinetics. Our model suggests that to agree with the known data on RAFT kinetics, the majority of cross‐terminating chains are dimeric or shorter. If longer chains are considered in cross‐termination reactions, then significant discrepancies with the experiments (distinguishable star polymers in the molecular weight distribution) and quantum calculations will result. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3455–3466, 2009  相似文献   

4.
There is appreciable uncertainty concerning the magnitude of the fragmentation rate coefficient of the intermediate radical in reversible addition‐fragmentation chain transfer (RAFT) polymerizations. A large proportion of the experimental and theoretical evidence suggests that it is a stable species with a lifetime longer than 0.0001 s. This is particularly the case when the intermediate macro‐RAFT radical is stabilized by a phenyl group attached to the radical center or has a poor leaving group. Although the occurrence to some extent of irreversible termination reactions cannot be excluded, we argue that such reactions are more likely to be a result of slow fragmentation of the intermediate macro‐RAFT radical. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2828–2832, 2003  相似文献   

5.
Electrospray ionization mass spectrometry was performed to identify the structure of polymeric methyl acrylates generated via the cumyl dithiobenzoate (CDB), cumyl p‐fluorodithiobenzoate (CPFDB), and 1‐phenylethyl dithiobenzoate (PEDB) mediated reversible addition–fragmentation chain‐transfer (RAFT) polymerizations. The relatively simple spectra clearly demonstrate the end groups of this living free‐radical polymerization technique. Only polymeric chains carrying one leaving group of the RAFT agent and the dithiobenzoate end group as the active RAFT center were discovered. Multiple‐stage mass spectrometric experiments and oxidation of the dithioester end group confirmed the structure of the generated polymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4032–4037, 2002  相似文献   

6.
A simplified kinetic model for RAFT microemulsion polymerization has been developed to facilitate the investigation of the effects of slow fragmentation of the intermediate macro‐RAFT radical, termination reactions, and diffusion rate of the chain transfer agent to the locus of polymerization on the control of the polymerization and the rate of monomer conversion. This simplified model captures the experimentally observed decrease in the rate of polymerization, and the shift of the rate maximum to conversions less than the 39% conversion predicted by the Morgan model for uncontrolled microemulsion polymerizations. The model shows that the short, but finite, lifetime of the intermediate macro‐RAFT radical (1.3 × 10?4–1.3 × 10?2 s) causes the observed rate retardation in RAFT microemulsion polymerizations of butyl acrylate with the chain transfer agent methyl‐2‐(O‐ethylxanthyl)propionate. The calculated magnitude of the fragmentation rate constant (kf = 4.0 × 101–4.0 × 103 s?1) is greater than the literature values for bulk RAFT polymerizations that only consider slow fragmentation of the macro‐RAFT radical and not termination (kf = 10?2 s?1). This is consistent with the finding that slow fragmentation promotes biradical termination in RAFT microemulsion polymerizations. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 604–613, 2010  相似文献   

7.
Living radical polymerization has allowed complex polymer architectures to be synthesized in bulk, solution, and water. The most versatile of these techniques is reversible addition–fragmentation chain transfer (RAFT), which allows a wide range of functional and nonfunctional polymers to be made with predictable molecular weight distributions (MWDs), ranging from very narrow to quite broad. The great complexity of the RAFT mechanism and how the kinetic parameters affect the rate of polymerization and MWD are not obvious. Therefore, the aim of this article is to provide useful insights into the important kinetic parameters that control the rate of polymerization and the evolution of the MWD with conversion. We discuss how a change in the chain‐transfer constant can affect the evolution of the MWD. It is shown how we can, in principle, use only one RAFT agent to obtain a polymer with any MWD. Retardation and inhibition are discussed in terms of (1) the leaving R group reactivity and (2) the intermediate radical termination model versus the slow fragmentation model. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3189–3204, 2005  相似文献   

8.
Reversible addition–fragmentation chain transfer (RAFT) polymerization is a useful technique for the formation of polymers with controlled architectures and molecular weights. However, when used in the polymerization of microemulsions, RAFT agents are only able to control the polymer molecular weight only at high RAFT concentrations. Here, a kinetic model describing RAFT microemulsion polymerizations is derived that predicts the reaction rates, molecular weight polydispersities, and particle size. The model predicts that at low RAFT concentrations, the RAFT agent will be consumed early in the reaction and that this will result in uncontrolled polymerization in particles nucleated late in the reaction. The higher molecular weight polydispersity that is observed in RAFT microemulsion polymerizations is the result of this uncontrolled polymerization. The model also predicts a shift in the conversion at which the maximum reaction rate occurs and a decrease in the particle size with increasing RAFT concentration. Both of these trends are also consistent with those observed experimentally. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6055–6070, 2006  相似文献   

9.
The synthesis of statistical and block copolymers, consisting of monomers often used as resist materials in photolithography, using reversible addition‐fragmentation chain transfer (RAFT) polymerization is reported. Methacrylate and acrylate monomers with norbornyl and adamantyl moieties were polymerized using both dithioester and trithiocarbonate RAFT agents. Block copolymers containing such monomers were made with poly(methyl acrylate) and polystyrene macro‐RAFT agents. In addition to have the ability to control molecular weight, polydispersity, and allow block copolymer formation, the polymers made via RAFT polymerization required end‐group removal to avoid complications during the photolithography. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 943–951, 2010  相似文献   

10.
Recently, two electron spin resonance (ESR)‐based methods for the determination of addition and fragmentation rate coefficients in dithiobenzoate‐mediated reversible addition fragmentation transfer (RAFT) polymerization were introduced, one being based on a spin‐trapping method and the other on single‐laser pulse initiation in conjunction with ESR detection at microsecond time resolution. For the RAFT‐intermediate radical fragmentation rate, coefficient data differing by six orders of magnitude were obtained, which cannot be explained by the usual model dependencies, that is the so‐called cross‐termination versus stable intermediate model. Even under consideration of fast cross‐termination in both cases, the large difference persists. Both the experimental designs are thus critically reviewed to identify potential error sources and to explain the vast difference in the individual results. Both techniques appear to be robust and only small interferences could be identified. Finally, recommendations for the refinement of the individual techniques are given to achieve a consistent kinetic picture of the underpinning reaction equilibria. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
A consecutive radical addition‐coupling reaction involving dithioester is applied to produce thermodegradable multisegmented polymer using α,ω‐dibromo polymer as precursor. The macroradical generated by single electron transfer process promoted by Cu/ligand from α,ω‐dibromo polymer can efficiently add to ethyl dithiobenzoate, which results intermediate adduct radical. The in situ formed adduct radical immediately undergoes crosscoupling reaction with macroradical, generating segmented polymer bridged with C? S bond. The consecutive radical addition‐coupling reaction generates multisegmented polymer linked by C? S bond following step‐growth mechanism. The multisegmented polymer can be thermodegraded in the presence of hydrogen atom donor or air. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
Block copolymers have become an integral part of the preparation of complex architectures through self‐assembly. The use of reversible addition–fragmentation chain transfer (RAFT) allows blocks ranging from functional to nonfunctional polymers to be made with predictable molecular weight distributions. This article models block formation by varying many of the kinetic parameters. The simulations provide insight into the overall polydispersities (PDIs) that will be obtained when the chain‐transfer constants in the main equilibrium steps are varied from 100 to 0.5. When the first dormant block [polymer–S? C(Z)?S] has a PDI of 1 and the second propagating radical has a low reactivity to the RAFT moiety, the overall PDI will be greater than 1 and dependent on the weight fraction of each block. When the first block has a PDI of 2 and the second propagating radical has a low reactivity to the RAFT moiety, the PDI will decrease to around 1.5 because of random coupling of two broad distributions. It is also shown how we can in principle use only one RAFT agent to obtain block copolymers with any desired molecular weight distribution. We can accomplish this by maintaining the monomer concentration at a constant level in the reactor over the course of the reaction. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5643–5651, 2005  相似文献   

13.
There is currently a highly controversial debate about the nature of the reversible addition–fragmentation chain transfer (RAFT) mechanism. In this debate, kinetic computer modeling is frequently used as a powerful tool to correlate experimental data with theoretical models to deduce the rate coefficients that govern the process. Frequently, the PREDICI program package has been used as a simulation tool. Recently, the implementation and mathematical basis of the RAFT process, with respect to PREDICI, have been criticized. This communication discusses the mathematical and mechanistic implementation of the RAFT process in the PREDICI program package and elucidates the well‐founded mathematical basis of the approach. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1441–1448, 2004  相似文献   

14.
The use of phenyldithioacetic acid (PDA) in homopolymerizations of styrene or methyl acrylate produced only a small fraction of chains with dithioester end groups. The polymerizations using 1‐phenylentyl phenyldithioacetate (PEPDTA) and PDA in the same reaction showed that PDA had little or no influence on the rate or molecular weight distribution even when a 1:1 ratio is used. The mechanistic pathway for the polymerizations in the presence of PDA seemed to be different for each monomer. Styrene favors addition of styrene to PDA via a Markovnikov type addition to form a reactive RAFT agent. The polymer was shown by double detection SEC to contain dithioester end groups over the whole distribution. This polymer was then used in a chain extension experiment and the Mn was close to theory. A unique feature of this work was that PDA could be used to form a RAFT agent in situ by heating a mixture of styrene and PDA for 24 h at 70 °C and then polymerizing in the presence of AIBN to give a linear increase in Mn and low values of PDI (<1.14). In the case of the polymerization of MA with PDA, the mechanism was proposed to be via degradative chain transfer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5232–5245, 2005  相似文献   

15.
The effect of the variation of the alkoxyamine concentration on the conversion and polydispersity of the nitroxide‐mediated living free‐radical polymerization of styrene is discussed. Four different alkoxyamines ( 1 – 4 ) have been used for these studies. For an alkoxyamine with a small equilibrium rate constant (K), such as styryl–TEMPO 2 , the conversion is governed by the autopolymerization of styrene. For efficient alkoxyamines 1 , 3 , and 4 , the conversion at high alkoxyamine concentrations is higher than the conversion obtained by autopolymerization. At high alkoxyamine concentrations, the conversions vary to a small extent for all the alkoxyamines studied. As long as the conversion remains high, the polydispersity index is small. In addition, simulations of polymerizations with a program for modeling nonlinear dynamics are discussed. Polymerizations with efficient alkoxyamines at high alkoxyamine concentrations are well described by the kinetic scheme applied. K for alkoxyamines 1 and 4 has been estimated with the simulations. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3342–3351, 2004  相似文献   

16.
A detailed model describing the kinetics of living polymerization mediated by reversible addition‐fragmentation chain transfer (RAFT) in seeded emulsion polymerization is developed. The model consists of a set of population balance equations of the different radical species in the aqueous phase and in the particle phase (accounting for radical segregation) as well as for the dormant species in the particle phase. The entire population of radicals was divided into several distinguished species, based on their length and their chain end group. The model results are helpful in understanding inhibition and retardation phenomena that are typical for RAFT emulsion polymerizations. While inhibition is due to the radical loss in form of the RAFT leaving group, retardation is mostly caused by a small amount of short dormant chains in the particle phase, leading to a slight increase of radical loss via RAFT exchange with radicals entering a particle. The model results are compared to a series of experiments, using cumyl dithiobenzoate as a RAFT agent in polymerizations of styrene. The agreement between experimental and model results is good and, notably, the only parameters considered adjustable were the RAFT exchange rate coefficients. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6114–6135, 2006  相似文献   

17.
A novel bifunctional acrylamido‐based reversible addition–fragmentation chain transfer (RAFT) chain‐transfer agent (CTA), N,N′‐ethylenebis[2‐(thiobenzoylthio)propionamide] (CTA2), has been synthesized and used for the controlled free‐radical polymerization of N,N‐dimethylacrylamide (DMA). A comparative study of CTA2 and the monofunctional CTA N,N‐dimethyl‐s‐thiobenzoylthiopropionamide (CTA1) has been conducted. Polymerizations mediated by CTA1 result in poly(N,N‐dimethylacrylamide) (PDMA) homopolymers with unimodal molecular weight distributions, whereas CTA2 yields unimodal, bimodal, and trimodal distributions according to the extent of conversion. The multimodal nature of the PDMAs has been attributed to termination events and/or chains initiated by primary radicals. The RAFT polymerization of DMA with CTA2 also results in a prolonged induction period that may be attributed to the higher local concentration of dithioester functionalities early in the polymerization. A series of ω‐ and α,ω‐dithioester‐capped PDMAs have been prepared in organic media and subsequently employed as macro‐CTAs for the synthesis of diblock and triblock copolymers in aqueous media with the zwitterionic monomer 3‐[2‐(N‐methylacrylamido)‐ethyldimethylammonio] propane sulfonate (MAEDAPS). Additionally, an ω‐dithioester‐capped MAEDAPS homopolymer has been used as a macro‐CTA for the block polymerization of DMA. To our knowledge, this is the first example of a near‐monodisperse, sulfobetaine‐containing block copolymer prepared entirely in aqueous media. The diblock and triblock copolymers form aggregates in pure water that can be dissociated by the addition of salt, as determined by 1H NMR spectroscopy and dynamic light scattering. In pure water, highly uniform, micellelike aggregates with hydrodynamic diameters of 71–93 nm are formed. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1262–1281, 2003  相似文献   

18.
A kinetic model has been developed for reversible addition–fragmentation transfer (RAFT) polymerization with the method of moments. The model predicts the monomer conversion, number‐average molecular weight, and polydispersity of the molecular weight distribution. It also provides detailed information about the development of various types of chain species during polymerization, including propagating radical chains, adduct radical chains, dormant chains, and three types of dead chains. The effects of the RAFT agent concentration and the rate constants of the initiator decomposition, radical addition, fragmentation, disproportionation, and recombination termination of propagating radicals and cross‐termination between propagating and adduct radicals on the kinetics and polymer chain properties are examined with the model. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1553–1566, 2003  相似文献   

19.
Two different initiator/transfer agents (inifers) containing an alkoxyamine and a dithiobenzoate were synthetized and used to trigger out either reversible addition‐fragmentation chain transfer (RAFT) polymerization or nitroxide‐mediated polymerization (NMP). α‐Dithiobenzoate‐ω‐alkoxyamine‐difunctional polymers were produced in both cases which were subsequently used as precursors in the formation of block copolymers. This synthetic approach was applied to N‐isopropylacrylamide (NIPAM) or polyethylene oxide methacrylate (EOMA) to form α,ω‐heterodifunctional homopolymers via RAFT at 60°C which were chain extended with styrene by activating the alkoxyamine moiety at 120°C. Under such temperature conditions, it is proposed that a tandem NMP/RAFT polymerization is initiated producing a simultaneous growth of polystyrene blocks at both chain‐ends. Self‐assembled nanostructures of these amphiphilic block copolymers were evidenced by scanning electron microscopy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
Reversible addition–fragmentation chain transfer (RAFT) was applied to the copolymerization of styrene and maleic anhydride. The product had a low polydispersity and a predetermined molar mass. Novel, well‐defined polyolefin‐based block copolymers were prepared with a macromolecular RAFT agent prepared from a commercially available polyolefin (Kraton L‐1203). The second block consisted of either polystyrene or poly(styrene‐co‐maleic anhydride). Furthermore, the colored, labile dithioester moiety in the product of the RAFT polymerizations could be removed from the polymer chain by UV irradiation. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3596–3603, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号