首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A macroscopic viscoelastic model for incompressible, isothermal, homogeneous lyotropic mesophases exhibiting the nematic polydomain texture is presented. Under equilibrium static conditions the model describes a three dimensional tessellation, where each region or nematic domain has a characteristic size and orientation, and where the polydomain texture has a random orientation. Close form expressions that define the characteristic texture size and the number of randomly oriented domains are given. When subjecting the model lyotropic liquid crystalline polymer displaying the polydomain texture to a steady rectilinear shear flow, the predicted characteristic texture size decreases with increasing shear rates. The power law scaling relations of texture size with shear rate are in excellent agreement with the experimental measurements. The steady shear flow orientation predictions, characterized by a positive shear dependent alignment angle and a low orientation, are in agreement with experimental data.  相似文献   

2.
In this paper, the microstructural evolution of controlled‐rheology polypropylene (CRPP) with different melt viscoelasticities was investigated by polarized optical microscopy, scanning electronic microscopy, differential scanning calorimeter, and wide‐angle X‐ray diffraction. It is found that a typical “skin‐core” structure formed in CRPP microparts and the thickness of oriented layer of CRPP microparts decreases notably with the addition of peroxide. The thickness of oriented layer and the distribution of different layers strongly depend on the melt flow properties and the corresponding relaxation time (λ). Furthermore, the mechanisms of the suppressed formation of oriented layers during the micro‐injection molding process are discussed mainly from the viewpoint of rheology and thermodynamics. It is revealed that the shear‐induced orientation is one of the key factors for the formation of oriented molecular structure (row nuclei). The final thickness of the oriented layer is the result of the competition between the orientation behavior and the disorientation behavior. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The polydomain–monodomain (PM) transformation takes place when a polydomain of a smectic‐C main‐chain liquid‐crystalline elastomer (SmC MCLCE) is uniaxially stretched. We present results based on a combination of mechanical and X‐ray experiments which show how the domains initially rearrange to finally form a perfect conical layer distribution (monodomain) when the sample is fully stretched. The rearrangement and orientational process of the domains is quantified and compared to the parallel and perpendicular uniaxial stress–strain deformations of a monodomain sample. The stress–strain behaviour of the polydomain lays between the uniaxial deformations, parallel and perpendicular to the director, of the monodomain sample.

  相似文献   


4.
Crystallization studies at quiescent and shear states in isotactic polypropylene (iPP) containing nanostructured polyhedral oligomeric silsesquioxane (POSS) molecules were performed with in situ small‐angle X‐ray scattering (SAXS) and differential scanning calorimetry (DSC). DSC was used to characterize the quiescent crystallization behavior. It was observed that the addition of POSS molecules increased the crystallization rate of iPP under both isothermal and nonisothermal conditions, which suggests that POSS crystals act as nucleating agents. Furthermore, the crystallization rate was significantly reduced at a POSS concentration of 30 wt %, which suggests a retarded growth mechanism due to the molecular dispersion of POSS in the matrix. In situ SAXS was used to study the behavior of shear‐induced crystallization at temperatures of 140, 145, and 150 °C in samples with POSS concentrations of 10, 20, and 30 wt %. The SAXS patterns showed scattering maxima along the shear direction, which corresponded to a lamellar structure developed perpendicularly to the flow direction. The crystallization half‐time was calculated from the total scattered intensity of the SAXS image. The oriented fraction, defined as the fraction of scattered intensity from the oriented component to the total scattered intensity, was also calculated. The addition of POSS significantly increased the crystallization rate during shear compared with the rate for the neat polymer without POSS. We postulate that although POSS crystals have a limited role in shear‐induced crystallization, molecularly dispersed POSS molecules behave as weak crosslinkers in polymer melts and increase the relaxation time of iPP chains after shear. Therefore, the overall orientation of the polymer chains is improved and a faster crystallization rate is obtained with the addition of POSS. Moreover, higher POSS concentrations resulted in faster crystallization rates during shear. The addition of POSS decreased the average long‐period value of crystallized iPP after shear, which indicates that iPP nuclei are probably initiated in large numbers near molecularly dispersed POSS molecules. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2727–2739, 2001  相似文献   

5.
Summary: Isothermal crystallization of an oriented blend of isotactic polystyrene (iPS) with poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) was studied by in situ polarized FT‐IR spectroscopy and wide‐angle X‐ray diffraction. The structural organization during the oriented crystallization consists of three stages. The first stage is the orientation relaxation of molecular chains of iPS and PPO, the degree of orientation of iPS increases in the second stage, and the oriented chains of iPS crystallize in the third stage.

  相似文献   


6.
Summary The shear orientation of a micellar hexagonal liquid crystalline phase was investigated by small-angle neutron scattering. The hexagonal phase in the quiescent state showed a symmetrical scattering pattern typical of a polydomain structure. Enhanced scattering along the flow direction was observed during shear and the anisotropy of scattering intensity became stronger with increasing shear rate. The anisotropic scattering pattern corresponds to an orientation perpendicular to the flow direction and can be interpreted as a log-rolling state. The oriented sample did not relax after cessation of shear. The results from small-angle neutron scattering confirm data obtained previously from rheo-small angle light scattering measurements and are discussed in comparison to shear alignment of lyotropic liquid crystalline polymer solutions.  相似文献   

7.
Bimodal polyethylenes comprising varying proportions of high‐ and low‐molecular‐weight fractions are synthesized in a single polymerization stage, via the co‐immobilization of a chromium and an iron catalyst on an MgCl2/AlEtn(OEt)3?n support. Changes observed in the viscoelastic response of the polymer melt with increasing content of the high‐molecular‐weight fraction indicate effective mixing in the bimodal blend. In flow, chains in the high‐molecular weight fraction tend to orient and stretch under shear. Due to the longer relaxation time of the high‐molecular‐weight component, X‐ray diffraction and scattering reveal that shear‐induced crystallization takes place at temperatures close to the equilibrium melting point of linear polyethylene. The so‐crystallized high‐molecular‐weight component suppresses the nucleation barrier for further crystallization, leading to the formation of a “shish‐kebab” polymer morphology.

  相似文献   


8.
Summary: The effect of poly(ε‐caprolactone) (PCL) molecular weight on the orientation of crystalline PCL in miscible poly(ε‐caprolactone)/poly(vinyl chloride) (PCL/PVC) blends, melt crystallized under strain, has been studied by a combination of wide angle X‐ray diffraction (WAXD) and small angle X‐ray scattering (SAXS) studies. An unusual crystal orientation with the b‐axis parallel to the stretching direction was observed in miscible PCL/PVC blends with PCL of high molecular weight (>21 000). SAXS showed the presence of nanosize confined PCL in the PCL/PVC blends, which could be preserved at temperatures higher than the Tm of PCL but lower than the Tg of PVC. A mechanism based on the confinement of PCL crystal growth was proposed, which can explain the formation of b‐axis orientation in PCL/PVC blends crystallized under strain.

SAXS pattern of stretched PCL/PVC blend after annealing at 90 °C for 5 min.  相似文献   


9.
The effect of shear flow on the structure of a phase‐separated, near‐critical blend of 50/50 (w/w) poly(styrene‐ran‐butadiene) and polybutadiene was studied with two different custom‐built rheo‐optical instruments that combined polymer melt flow and small‐angle light scattering (SALS). The deformation of the phase domains during shear flow was nonaffine, and the SALS patterns evolved from a spinodal ring (SR) pattern to a squashed SR with two high‐intensity lobes, to an H‐pattern, to a butterfly pattern with a dark streak along the equator, and finally to a steady‐state, elliptical pattern. The SALS patterns were explained in terms of a network model, in which the strands of the network first orient in the flow direction, then extend in this direction, and finally break up into droplets aligned in the flow direction. According to this picture, the strands in the vorticity direction do not deform until relatively high strains, after which the periodicity of the network begins to disappear. Supporting this model was the observation that the transitions between the different SALS patterns corresponded to inflections and/or maxima in the shear stress or first normal stress difference. Increasing the shear rate changed the kinetics of the structure evolution and reduced the size of the phase‐separated droplets in the steady state. No evidence was obtained for flow‐induced miscibility. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1725–1738, 2004  相似文献   

10.
Orientation angle and stress‐relaxation dynamics of entangled polystyrene (PS)/diethyl phthalate solutions were investigated in steady and step shear flows. Concentrated (19 vol %) solutions of 0.995, 1.81, and 3.84 million molecular weight (MW) PS and a semidilute (6.4 vol %) solution of 20.6 million MW PS were used to study the effects of entanglement loss on dynamics. A phase‐modulated flow birefringence apparatus was developed to facilitate measurements of time‐dependent changes in optical equivalents of shear stress (n12 ≈ Cσ) and first normal stress differences (n1 = n11 ? n22 ≈ CN1) in a planar‐Couette shear‐flow geometry. Flow birefringence results were supplemented with cone‐and‐plate mechanical rheometry measurements to extend the range of shear rates over which entangled polymer dynamics are studied. In slow > ) steady shear‐flow experiments using the ultrahigh MW polymer sample (20.6 × 106 MW PS), steady‐state n12 and n1 results manifest unusual power‐law dependencies on shear rate [n12,ss 0.4 and n1,ss 0.8]. At shear rates in the range τ < < τ, steady‐state orientation angles χSS are found to be nearly independent of shear rate for all but the most weakly entangled materials investigated. For solutions containing the highest MW PS, an approximate plateau orientation angle χp in the range 20–24° is observed; χp values ranging from 14 to 16° are found for the other materials. In the start‐up of fast steady shear flow ˙ ≥ τ), transient undershoots in orientation angle are also reported. The molecular origins of these observations were examined with the help of a tube model theory that accommodates changes in polymer entanglement density during flow. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2275–2289, 2001  相似文献   

11.
Isotactic polypropylene (iPP) composite with two‐scale reinforcement structure, i.e. nanoscale shish–kebab structure and micron‐scale glass fiber (GF) with orientation, was fabricated by an oscillatory shear injection molding (OSIM) technology. The oscillatory shear flow provided by the OSIM gave rise to a high fraction of shish–kebab structures in the iPP composite, characterized by X‐ray scattering technique. On the other hand, the oscillatory shear flow oriented GFs in the iPP composite, which was revealed by scanning electron microscopy measurement. The iPP composite with this two‐scale reinforcement structure exhibited simultaneously remarkably enhanced tensile strength and impact strength. Fracture mechanism of this iPP composite was also proposed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Poly(ethylene terephthalate) films with oriented lamellar structure were deformed in tensile experiments and investigated in situ using small angle X‐ray scattering. The tensile direction was set parallel, normal and in an angle of 45° relative to the surface normal of the lamellae. Data were interpreted in terms of two‐dimensional autocorrelation functions. The deformation of lattice spacing and lamellar orientation can largely be explained by affine transformations. The sample, where the lamellar surface normal was normal to tensile direction, developed a chequerboard type arrangement of crystalline parts. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 159–169  相似文献   

13.
Formation of shish‐kebab crystals due to the coil–stretch transition under shear in the molten state using a bimodal polyethylene system with high molecular weight (HMW) fraction having different branch content was investigated. In specific, in situ small‐angle X‐ray scattering (SAXS) and wide‐angle X‐ray diffraction (WAXD) techniques were used to study the structure evolution of shish‐kebab crystals at high temperatures under simple shear. The SAXS results revealed that with the increase of branch content, shish‐kebab crystals became more stable at high temperatures (e.g., 139 °C). However, the shish length of the bimodal PE containing 0.11% branch was shorter than that with no branch. The WAXD results showed that the degree of crystallization for bimodal PE with HMW fraction having 0.11% branch increased with time but reached a plateau value of 1%, while that with no branch increased continuously till 11%. Furthermore, the crystal orientation of bimodal PE with HMW fraction having 0.11% branch was above 0.9 and maintained at a constant value, while that with no branch decreased from 0.9 to 0.1 upon relaxation. This study indicates that even though the crystallizability of the HMW fraction with branch content decreased, they could effectively stabilize the shear‐induced crystalline structure with shorter shish‐kebab crystals. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 786–794  相似文献   

14.
Three stages of elastic behavior were observed during cyclic deformations for poly(ether‐b‐amide) (PEBA) segmented copolymers based on crystalline hard segments of polyamide 12 (PA12) and amorphous soft segments of poly(tetramethylene oxide) (PTMO). The underlying microstructural evolution was characterized by a combination of in situ Fourier transform infrared spectroscopy (FTIR), wide‐angle X‐ray diffraction (WAXD), and small‐angle X‐ray scattering (SAXS) technologies. The γ–α″ phase transition of crystalline PA12 occurred upon stretching, and the orientation of the α″ phase was less reversible under larger strains. PTMO chain orientation cannot be restored to the initial state, contributing to plastic deformation. Driven by the entropy effect, the strain‐induced crystallization of PTMO can fuse during sample retarding, exerting little influence on the residual strain. For PEBA with a shore D hardness of 35 D, the long period (L) can be restored to the initial L after the sample was unloaded until system fibrillation. The tie molecules between adjacent oriented lamellae can be by drawn out high stress in a PEBA material with a shore D hardness of 40 D, and the relaxation led to a second long period. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 855–864  相似文献   

15.
We studied the formation and relaxation of precursors of shish‐kebab in isotactic polystyrene after applying pulse shear flow at temperatures above the nominal melting temperatures Tm (=223 °C). It was found that the string‐like objects that were assigned to precursors in a previous article appeared in micrometer scale up to ~285 °C, which was very close to the equilibrium melting temperature T (=289 °C), and the length and the diameter showed two‐step decays consisting of the fast and slow (almost nondecaying) components below ~270 °C, whereas the slow component disappeared above ~270 °C, suggesting that some mechanism stabilizing the string‐like objects disappeared at ~270 °C. It was also found that the two‐step decay was a nature of a single string‐like object, but not an average nature of many precursors, showing heterogeneous inner structure of the precursor. We discussed a possibility that the string‐like object had a fringed micelle type structure including large crystals with a melting temperature of ~270 °C. Within the proposed picture, the highest temperature for the precursor formation (~285 °C) was explained as a melting of the large crystals in oriented melt. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

16.
The crystallization behaviors of isotactic polypropylene (iPP) and its blends with thermoelastomers have been investigated with in situ X‐ray scattering and optic microscopy. At quiescent condition, the crystallization kinetics of iPP is not affected by the presence of elastomers; while determined by the viscosity, the differences are observed on sheared samples. With a fixed shear strain, the crystallization rate increases with increasing the shear rate. The fraction of oriented lamellar crystals in blends is higher than that in pure iPP sample, while the percentage of β phase is reduced by the presence of the elastomers. On the basis of experimental results, no direct correlation among the fraction of oriented lamellae, the percentage of β phase, and growth rate can be deduced. The evolution of the fraction of oriented lamellae supports that shear field promotes nucleation rather than growth process. Shear flow induces the formation of nuclei not only with preferring orientation but also with random orientation. The total density of nuclei, which determines the crystallization kinetics, does not control the ratio between nuclei with and without preferring orientation, which determines the fraction of oriented lamellae. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1188–1198, 2006  相似文献   

17.
Flow‐induced structure formation is investigated with in situ wide‐angle X‐ray diffraction with high acquisition rate (30 Hz) using isotactic polypropylene in a piston‐driven slit flow with high wall shear rates (up to ≈900 s−1). We focus on crystallization within the shear layers that form in the high shear rate regions near the walls. Remarkably, the kinetics of the crystallization process show no dependence on either flow rate or flow time; the crystallization progresses identically regardless. Stronger or longer flows only increase the thickness of the layers. A conceptual model is proposed to explain the phenomenon. Above a certain threshold, the number of shish‐kebabs formed affects the rheology such that further structure formation is halted. The critical amount is reached already within 0.1 s under the current flow conditions. The change in rheology is hypothesized to be a consequence of the “hairy” nature of shish. Our results have large implications for process modelling, since they suggest that for injection molding type flows, crystallization kinetics can be considered independent of deformation history.

  相似文献   


18.
Summary: Shear‐induced orientation of nanoparticles in poly(ethylene oxide)/Laponite RD hydrogels has been investigated by small angle neutron scattering (SANS). As temperature is reduced, anisotropy develops at lower shear rates. The two‐correlation length Debye–Anderson–Brumberger (DAB) model provides a good fit to the experimental data. The deduced short‐range correlation length (≈5 nm) is observed to increase with shear. The long‐range correlation length (≈50 nm) shows a strong directional dependence, and decreases when shear is applied. The relative contribution of long‐range order to the SANS intensity is observed to increase with shear and decrease with temperature.

SANS anisotropy |(IyIx)/(Iy + Ix)| as a function of shear rate and q at 2 °C.  相似文献   


19.
Summary: Shear‐induced crystallization in a blend of isotactic poly(propylene) and poly(ethylene‐co‐octene) (iPP/PEOc) has been investigated by means of in‐situ optical microscopy and a shear hot stage under various thermal and shear histories. Cylindrites are observed after shear in the phase‐separated iPP/PEOc blends for the first time. The nuclei (shish) come from the orientation of the entangled network chains, and the relationship between the shear rate and the network relaxation time of the oriented iPP chains is a very important factor that dominates the formation of the cylindrites after liquid‐liquid phase separation. The cylindrites can grow through phase‐separated domains with proper shear rate and shear time. In addition, the number of spherulites increases with shear rate, which is consistent with the notion of fluctuation‐induced nucleation/crystallization.

Phase‐contrast optical micrograph of the iPP/PEOc = 50/50 (wt.‐%) sample sheared during cooling with shear rate of 10 s−1 and isothermally crystallized at 140 °C for 142 s after isothermal annealing at 170 °C for 420 min. The shear time is 180 s.  相似文献   


20.
Relaxation dynamics of salt‐free, aqueous solutions of sodium poly(styrene sulfonate) (NaPSS) were investigated by mechanical rheometry and flow birefringence measurements. Two semidilute concentration regimes were studied in detail for a range of polymer molecular weights. At solution concentrations c < 10 mg mL, limiting shear viscosity η0 was found to scale with molecular weight and concentration as η0c0.5Mw over nearly two decades in concentration. At higher solution concentrations, c > 10 mg mL, a change in viscosity scaling was observed η0 ∼ c1.5M, consistent with a change from simple Rouse dynamics for unentangled polyions to near‐perfect reptation dynamics for entangled chains. Characteristic relaxation times τ deduced from shear stress and birefringence relaxation measurements following start‐up of steady shearing at high rates reveal very different physics. For c < 10 mg mL, both methods yield τ ∼ c−0.42M and τ ∼ c0M for c > 10 mg mL. Curiously, the concentration scalings seen in both regimes are consistent with theoretical expectations for salt‐free polyelectrolyte solutions undergoing Rouse and reptation dynamics, respectively, but the molecular weight scalings are not. Based on earlier light scattering studies using salt‐free NaPSS solutions, we contend that the unusual relaxation behavior is likely due to aggregation and/or coupled polyion diffusion. Simultaneous stress and birefringence measurements suggest that in concentrated solution, NaPSS aggregates are likely well permeated by solvent, supporting a loose collective of aggregated chains rather than the dense polymer aggregates previously supposed. Nonetheless, polyion aggregates of either variety cannot account for the inverse dependence of relaxation time on polymer molecular weight for c < 10 mg mL. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 825–835, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号