首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Polyacrylonitrile (PAN) membrane was hydrolyzed with NaOH(aq) and grafted with conjugated linoleic acid (CLA) via esterification with 1,3‐propanediol. The resulting CLA grafted PAN membranes were characterized using Fourier transform infrared spectrometry (FT‐IR) and X‐ray photoelectronic spectroscopy (XPS). The effects of CLA grafting on the blood coagulation, platelet aggregation, and oxidative stress were evaluated using human blood. The complete blood count (CBC) and coagulation time (CT) was evaluated in vitro for hemocompatibility. After CLA grafting, the proliferation of human umbilical vein endothelial cells (HUVECs) on the membranes were improved. In addition, the production of reactive oxygen species (ROS) was measured by the chemiluminescence (CL) method to evaluate the oxidative stress. The results showed that the CLA‐grafted PAN membrane could keep the CBC values more stable than unmodified PAN membrane. The CLA‐grafted PAN membranes also showed longer CT. CLA‐grafted PAN membrane could keep the CL counts of hydrogen peroxide and superoxide values more stable than unmodified PAN membrane. These results suggest that a CLA‐grafted PAN membrane could offer protection for patients against oxidative stress and would be helpful for reducing the dosage of anticoagulant during hemodialysis. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Sialic acid (N‐acetylneuraminic acid, NANA) was covalently immobilized onto the surface of a polysulfone (PSF) hollow fiber membrane. Prior to the immobilization, the surface of PSF was treated with ozone, followed by grafting with acrylic acid, and then the esterification of NANA. The surface concentration of NANA was determined by 2‐thiobarbituric acid (TBA) test. Hemocompatibility, the capability of suppressing oxidative stress, and clearance of lipopolysaccharide (LPS) from the resulting hollow fiber membrane were evaluated. The results show that by immobilizing NANA onto PSF hollow fiber, the adhesion of platelet was reduced, while both APTT and PT were little affected. Furthermore, oxidative stress was suppressed by NANA‐immobilized PSF hollow fibers. The level of LPS was also greatly reduced. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
Conjugated linoleic acid (CLA) was covalently immobilized onto cellulose acetate (CA) membranes. The effects of CLA immobilization on the blood coagulation, platelet aggregation, and oxidative stress were evaluated using human blood. The resulting CLA grafting CA membranes were characterized with X-ray photoelectronic spectroscopy (XPS). The complete blood count (CBC) and coagulation time (CT) was evaluated in vitro for the hemocompatibility. Human serum albumin (HSA) and human plasma fibrinogen (HPF) was evaluated for the protein affinity. The production of reactive oxygen species (ROS) was measured by chemiluminescence (CL) method to evaluate the oxidative stress. The results showed that the CLA-immobilizing CA membrane could keep the CBC values more stable than unmodified CA membrane. The CLA-immobilized CA membranes also showed longer CT and less adsorption of plasma proteins. CLA-immobilized CA membrane could keep the CL counts of hydrogen peroxide and superoxide values more stable than unmodified CA membrane. These results suggest that a CLA-immobilized CA membrane could offer protection for patients against oxidative stress and would be helpful for reducing the dosage of anticoagulant during hemodialysis.  相似文献   

4.
Polyethylene terephthalate (PET) was aminolyzed with 1,6‐diaminohexane (DAH) and then sialic acid (NANA) was immobilized via amidation onto the surface. The surface concentration of NANA was determined by 2‐thiobarbituric acid (TBA) test. The hemocompatibility of the resulting PET fabrics was evaluated based on complete blood count (CBC), coagulating times, and protein adsorption. The ability to remove lipopolysaccharide (LPS) was also determined. In addition, the effect of contacting NANA‐immobilizing PET on the suppression of reactive oxygen species (ROS) production was measured by the chemiluminescence (CL) method. The results show that by immobilizing NANA onto PET, the adhesion of platelet (PLt) was reduced, and oxidative stress was suppressed. The level of LPS was also greatly reduced. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Polysulfone (PSF) membranes were treated with ozone to introduce peroxides, and then grafted with either acrylic acid or chitosan, followed by the immobilization of heparin. The effect of spacer arm on blood compatibility was investigated using three chitosans of different molecular weight [1170 (water soluble), 160 000, and 400 000] and similar degrees of deacetylation (75%). The hydrophilicity was evaluated by measuring the contact angle of water. Blood compatibility was evaluated using the activated partial thromboplastin time (APTT) as well as the adhesion of platelets. The protein affinity was determined by the absorption of human serum albumin (HSA) and human plasma fibrinogen (HPF). The results show that by the coupling of chitosan, the amount of heparin immobilized can be increased by four times. Water contact angle (from 78 ° to 41 °) decreased with the increase of the amount of heparin immobilized, showing increased wettability. The heparinized PSF membrane showed longer APTT and decreasing platelet adhesion, compared to that of unmodified PSF membrane. The adsorption of HSA and HPF were reduced to 17 and 6%, respectively. This suggests that longer spacer binding to heparin can increase the opportunity of anti‐coagulation on contacting blood. These results demonstrated that the hydrophilicity and blood compatibility of PSF membrane could be improved by chitosan and heparin conjugate. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
Oxidative stress caused by the production of reactive oxygen species (ROS) plays a major role in inflammatory processes. We hypothesized that modulation of ROS via quercetin may protect against oxidative stress and inflammation. Thus, this study aimed to investigate the effects of quercetin on oxidative stress and inflammation in lung epithelial A549 cells. The lipopolysaccharide (LPS)-induced elevation of intracellular ROS levels was reduced after quercetin treatment, which also almost completely abolished the mRNA and protein expression of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) induced by LPS stimulation. In addition, quercetin suppressed the nuclear translocation of nuclear factor kappa B (NF-κB) and reduced levels of inflammatory cytokine tumor necrosis factor (TNF)-α, interleukin (IL)-1, and IL-6, which had increased significantly after LPS exposure. Our data demonstrated that quercetin decreased ROS-induced oxidative stress and inflammation by suppressing NOX2 production.  相似文献   

7.
It remains unknown if the oxidative stress can be regulated by low‐level laser therapy (LLLT) in lung inflammation induced by intestinal reperfusion (i‐I/R). A study was developed in which rats were irradiated (660 nm, 30 mW, 5.4 J) on the skin over the bronchus and euthanized 2 h after the initial of intestinal reperfusion. Lung edema and bronchoalveolar lavage fluid neutrophils were measured by the Evans blue extravasation and myeloperoxidase (MPO) activity respectively. Lung histology was used for analyzing the injury score. Reactive oxygen species (ROS) was measured by fluorescence. Both expression intercellular adhesion molecule 1 (ICAM‐1) and peroxisome proliferator‐activated receptor‐y (PPARy) were measured by RT‐PCR. The lung immunohistochemical localization of ICAM‐1 was visualized as a brown stain. Both lung HSP70 and glutathione protein were evaluated by ELISA. LLLT reduced neatly the edema, neutrophils influx, MPO activity and ICAM‐1 mRNA expression. LLLT also reduced the ROS formation and oppositely increased GSH concentration in lung from i‐I/R groups. Both HSP70 and PPARy expression also were elevated after laser irradiation. Results indicate that laser effect in attenuating the acute lung inflammation is driven to restore the balance between the pro‐ and antioxidants mediators rising of PPARy expression and consequently the HSP70 production.  相似文献   

8.
Antimicrobial polyamide (PA) received much attention for the demand of packaging and biomedical fields. In this paper, an antimicrobial PA6 membrane was prepared via a surface chemical reaction. A highly effective antibacterial component (PHMG‐E) with terminal epoxy group was firstly synthesized via a reaction between polyhexamethylene guanidine hydrochloride (PHMG) and ethylene glycol diglycidyl ether (EGDE). Then, PHMG‐E was bonded on the surface of PA6 membrane with secondary amine reduced by borane‐tetrahydrofuran (BH3‐THF). The antimicrobial rates of surface‐modified PA6 membrane (PA6‐PHMG) against Escherichia coli and Staphylococcus aureus were both higher than 99.99%, and the PHMG was non‐leaching due to the chemical bonding. The hydrophilicity of antibacterial PA6 membrane was also significantly improved and the mechanical performance became better.  相似文献   

9.
3‐Hydroxy‐N,N‐diethylaniline (HDEA) as a tertiary aromatic amine was introduced onto the surface of chloromethylated polysulfone (CMPSF) microfiltration membrane through modification reaction, resulting in the modified membrane PSF‐DEA. A redox surface‐initiating system (DEA/APS) was constituted by the bonded tertiary aromatic amine group DEA and ammonium persulfate (APS) in aqueous solution, and so, the free radicals formed on the membrane initiated sodium p‐styrenesulfonate (SSS) as an anionic monomer to produce graft polymerization, getting the grafting‐type composite microfiltration membrane, PSF‐g‐PSSS membrane. Subsequently, the adsorption property of PSF‐g‐PSSS membrane for three heavy metal ions, Pb2+, Zn2+, and Hg2+ ions, was fully examined, and the rejection performance of PSF‐g‐PSSS membrane towards the three heavy metal ions was emphatically evaluated via permeation experiments. The experimental results show that by the initiating of the surface‐initiating system of DEA/APS, the graft polymerization can smoothly be carried out under mild conditions. PSF‐g‐PSSS membrane as a functional microfiltration membrane has strong adsorption ability for heavy metal ions by right of strong electrostatic interaction (or ion exchange action) between the anionic sulfonate ions on the membrane and heavy metal ions. The order of adsorption capacity is Pb2+ > Zn2+ > Hg2+, and the adsorption capacity of Pb2+ ion gets up to 2.18 μmol/cm2. As the volume of permeation solutions, in which the concentrations of the three metal ions are 0.2 mmol/L, are in a range of 50 to 70 mL, the rejection rate of PSF‐g‐PSSS membrane for the three heavy metal ions can reach a level of 95%, displaying a fine rejection and removing performance towards heavy metal ions.  相似文献   

10.
The fabrication of polymer microchips allows inexpensive, durable, high-throughput and disposable devices to be made. Poly(methylmethacrylate) (PMMA) microchips have been fabricated by hot embossing microstructures into the substrate followed by bonding a cover plate. Different surface modifications have been examined to enhance substrate and cover plate adhesion, including: air plasma treatment, and both acid catalyzed hydrolysis and aminolysis of the acrylate to yield carboxyl and amine-terminated PMMA surfaces. Unmodified PMMA surfaces were also studied. The substrate and cover plate adhesion strengths were found to increase with the hydrophilicity of the PMMA surface and reached a peak at 600 kN m(-2) for plasma treated PMMA. A solvent assisted system has also been designed to soften less than 50 nm of the surface of PMMA during bonding, while still maintaining microchannel integrity. The extent to which both surface modifications and solvent treatment affected the adhesion of the substrate to the cover plate was examined using nanoindentation methods. The solvent bonding system greatly increased the adhesion strengths for both unmodified and modified PMMA, with a maximum adhesion force of 5500 kN m(-2) achieved for unmodified PMMA substrates. The bond strength decreased with increasing surface hydrophilicity after solvent bonding, a trend that was opposite to what was observed for non-solvent thermal bonding.  相似文献   

11.
以人肺上皮细胞系A549为模型细胞, 探讨多壁碳纳米管的细胞毒性效应及其机制. A549细胞暴露于不同浓度(0~300 μg/mL)的多壁碳纳米管后, 用MTT比色法检测细胞活力和Hoechst 33342染色法观察细胞形态; 用活性氧(ROS)敏感探针2',7'-二氯荧光素二乙酸酯(DCFH-DA)结合流式细胞仪检测细胞内ROS水平; 用荧光探针JC-1结合激光共聚焦显微镜检测细胞线粒体膜电位ΔΨm的变化; 用免疫荧光和蛋白印迹法检测细胞氧化应激敏感蛋白血红素氧合酶-1(HO-1)的表达水平. 结果表明, 多壁碳纳米管可引起A549细胞活性降低、细胞内活性氧ROS过量产生以及谷胱甘肽GSH含量下降, 诱导细胞氧化应激效应; 抗氧化剂N-乙酰半胱氨酸(NAC)抑制多壁碳纳米管诱导的A549细胞内ROS的产生. 多壁碳纳米管处理A549细胞2 h后, 诱发细胞线粒体膜电位下降; 多壁碳纳米管诱导细胞氧化应激的同时伴有适应性应激蛋白HO-1的上调表达. 结果表明, 细胞氧化应激和线粒体膜电位去极化可能是多壁碳纳米管诱导A549细胞毒性效应的重要机制.  相似文献   

12.
The retinal pigment epithelium (RPE) is a highly metabolic layer of postmitotic cells lining Bruch's membrane in the retina. While these cells contain endogenous photosensitizers that mediate blue light‐induced damage, it has also been shown that blue light exposure damages mitochondrial DNA in RPE cells resulting in mitochondrial dysfunction and unregulated generation of reactive oxygen species (ROS). As RPE cells are postmitotic, it is imperative to decrease oxidative stress to these cells and preserve function. Dietary plant‐derived antioxidants such as anthocyanins offer a simple and accessible solution for decreasing oxidative stress. The anthocyanins malvidin‐3‐O‐glucoside (oenin) and pelargonidin‐3‐O‐glucoside (callistephin) were tested for their ability and efficacy in decreasing ROS generation and preserving mitochondrial redox activity in blue light‐irradiated ARPE‐19 cells. A significant decrease in intracellular ROS with concurrent increase in mitochondrial redox activity was observed for tested concentrations of oenin, while callistephin was beneficial to stressed cells at higher concentrations. These findings suggest anthocyanins are effective antioxidants in blue light‐stressed RPE cells in vitro. Additionally, oxidation products of these anthocyanins were examined using LC/MS and findings suggest the possibility of multiple oxidation sites for these compounds.  相似文献   

13.
The air-dried aerial parts of Lavandula angustifolia Mill, a traditional Uygur herbal drug, is used as resuscitation-inducing therapy to treat neurodisfunctions, such as stroke. This study was designed to assess the neuroprotective effects of lavender oil against ischemia/reperfusion (IR) injury in mice. Focal cerebral ischemia was induced by the intraluminal occlusion method with a nylon string. The neurodysfuntion was evaluated by neurological deficit and the infarct area was showed by 2,3,5-triphenyltetrazolium chloride (TTC) staining. The histopathological changes were observed by hematoxylin and eosin staining. The levels of mitochondria-generated reactive oxygen species (ROS), malondialdehyde (MDA) and carbonyl, the ratio of reduced glutathione (GSH)/glutathione disulfide (GSSG), the activities of superoxide dismutase (SOD), catalase (CAT) and glutathion peroxidase (GSH-Px) in brain tissue were measured to estimate the oxidative stress state. Neurological deficit, infarct size, histopathology changes and oxidative stress markers were evaluated after 22 h of reperfusion. In comparison with the model group, treatment with lavender oil significantly decreased neurological deficit scores, infarct size, the levels of MDA, carbonyl and ROS, and attenuated neuronal damage, upregulated SOD, CAT, GSH-Px activities and GSH/GSSG ratio. These results suggested that the neuroprotective effects of lavender oil against cerebral ischemia/reperfusion injury may be attributed to its antioxidant effects.  相似文献   

14.
Ultraviolet-A (UVA) radiation causes significant oxidative stress because it leads to the generation of reactive oxygen species (ROS), leading to extensive cellular damage and eventual cell death either by apoptosis or necrosis. We evaluated the protective effects of cyanidin-3-O-beta-glucopyranoside (C-3-G) against UVA-induced apoptosis and DNA fragmentation in a human keratinocyte cell line (HaCaT). Treatment of HaCaT cells with C-3-G before UVA irradiation inhibited the formation of apoptotic cells (61%) and DNA fragmentation (54%). We also investigated antioxidant properties of C-3-G in HaCaT cells against ROS formation at apoptotic doses of UVA; C-3-G inhibited hydrogen peroxide (H2O2) release (an indicator of cellular ROS formation) after UVA irradiation. Further confirmation of the potential of C-3-G to counteract UVA-induced ROS formation comes from our demonstration of its ability to enhance the resistance of HaCaT cells to the apoptotic effects of both H2O2 and the superoxide anion (O2*-), two ROS involved in UVA-oxidative stress. Furthermore, in terms of Trolox Equivalent Antioxidant Activity, C-3-G treatment led to a greater increase in antioxidant activity in the membrane-enriched fraction than in the cytosol (55% vs 19%). The protective effects against UVA-induced ROS formation can be attributed to the higher membrane levels of C-3-G incorporation. These encouraging in vitro results support further research into C-3-G (and other anthocyanins) as novel agents for skin photoprotection.  相似文献   

15.
One new sesquineolignan, obovatalignan A ( 1 ), and one new neolignan, obovatalignan B ( 2 ), were isolated from the Magnolia obovata fruits. Their chemical structure, including absolute configuration, was determined based on various spectroscopic methods, such as HR‐EI‐MS, 1D‐NMR (1H, 13C, DEPT), 2D‐NMR (gCOSY, gHSQC, gHMBC, NOESY), and CD spectroscopy. The compounds were evaluated for protective effects against glutamate‐induced oxidative stress in HT22‐immortalized hippocampal cells and inhibitory activity against NO production in LPS‐induced RAW 264.7 cells. Compounds 1 and 2 exhibited protective effects against glutamate‐induced oxidative stress with EC50 values of 18.1 ± 1.23 and 7.10 ± 0.78 μm , respectively, as well as inhibitory effects on NO production with IC50 values of > 30.0 and 8.22 ± 2.01 μm , respectively.  相似文献   

16.
The reduction of free radicals by bioactive membranes used for hemodialysis treatment is an important topic due to the constant rise of oxidative stress‐associated cardiovascular mortality by hemodialysis patients. Therefore, it is urgent to find an effective solution that helps to solve this problem. Polysulfone membranes enriched with α‐lipoic acid, α‐tocopherol, and with both components are fabricated by spin coating. The antioxidant properties of these membranes are evaluated in vitro by determining the lipid‐peroxidation level and the total antioxidant status of the blood plasma. The biocompatibility is assessed by quantifying the protein adsorption, platelet adhesion, complement activation, and hemolytic effect. All types of membranes show in vitro antioxidant activity and a trend to reduce oxidative stress in vivo; the best results show membranes prepared with a combination of both compounds and prove to be nonhemolytic and hemocompatible. Moreover, the membrane specific separation ability for the main waste products is not affected by antioxidants incorporation.  相似文献   

17.
18.
Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon (PAH) primarily formed by burning of fossil fuels, wood and other organic materials. BaP as group I carcinogen shows mutagenic and carcinogenic effects. One of the important mechanisms of action of (BaP) is its free radical activity, the effect of which is the induction of oxidative stress in cells. BaP induces oxidative stress through the production of reactive oxygen species (ROS), disturbances of the activity of antioxidant enzymes, and the reduction of the level of non-enzymatic antioxidants as well as of cytokine production. Chemical compounds, such as vitamin E, curcumin, quercetin, catechin, cyanidin, kuromanin, berberine, resveratrol, baicalein, myricetin, catechin hydrate, hesperetin, rhaponticin, as well as taurine, atorvastatin, diallyl sulfide, and those contained in green and white tea, lower the oxidative stress induced by BaP. They regulate the expression of genes involved in oxidative stress and inflammation, and therefore can reduce the level of ROS. These substances remove ROS and reduce the level of lipid and protein peroxidation, reduce formation of adducts with DNA, increase the level of enzymatic and non-enzymatic antioxidants and reduce the level of pro-inflammatory cytokines. BaP can undergo chemical modification in the living cells, which results in more reactive metabolites formation. Some of protective substances have the ability to reduce BaP metabolism, and in particular reduce the induction of cytochrome (CYP P450), which reduces the formation of oxidative metabolites, and therefore decreases ROS production. The aim of this review is to discuss the oxidative properties of BaP, and describe protective activities of selected chemicals against BaP activity based on of the latest publications.  相似文献   

19.
The application of silicon mold inserts by micro‐hot embossing molding has been explored in microfluidic chip fabrication. For the mold insert, this study employed an SU‐8 photoresist to coat the silicon wafer. Ultraviolet light was then used to expose the pattern on the SU‐8 photoresist surface. This study replicates the microstructure of the silicon mold insert by micro‐hot embossing molding. Different processing parameters (embossing temperature, embossing pressure, embossing time, and de‐molding temperature) for the cycle‐olefin polymer (COP) film of microfluidic chips are evaluated. The results showed that the most important parameter for replication of molded microfluidic chip is embossing temperature. De‐molding temperature is the most important parameter for surface roughness of the molded microfluidic chip. The microchannel is bonded with a cover by thermal bonding processing to form the sealed microfluidic chip. The bonding temperature is the most important factor in the bonding strength of the sealed microfluidic chip. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The flexural properties of isotactic polypropylene (PP) matrix composites reinforced with 5–30 vol% of unidirectional pitch‐based carbon, polyacrylonitrile (PAN)‐based carbon, e‐glass or aramid fibers were measured using both static and dynamic test methods. Previous research has shown that these pitch‐based carbon and aramid fibers are capable of densely nucleating PP crystals at the fiber surface, leading to the growth of an oriented interphase termed a “transcrystalline layer” (TCL), while the e‐glass and PAN‐based carbon fibers show no nucleating ability. The PP matrices examined included unmodified homopolymers, nucleated homopolymers and PP grafted with maleic anhydride (MA). The composites based on the unmodified PP homopolymers all exhibited poor fiber/matrix adhesion, regardless of fiber type and presence or absence of a TCL. The addition of nucleating agent to the PP matrix had no measurable effect on either the amount of TCL material in pitch‐based carbon‐fiber‐reinforced composites, as measured by wide‐angle X‐ray scattering, WAXS, or the static flexural properties of the composites reinforced with either type of carbon fiber. However, MA grafting reduced the transcrystalline fraction of the matrix in pitch‐based carbon‐fiber‐reinforced composites; at the highest level of MA grafting, the TCL was completely suppressed. In addition, high levels of MA grafting improved the transverse flexural modulus of the composites containing both types of carbon fibers, and reduced the extent of fiber pull‐out, indicating an improvement in fiber/matrix adhesion. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号