首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 131 毫秒
1.
Positively charged, raspberry‐like hybrid nanoparticles, consisting of a polystyrene core and an alumina‐coated silica shell were successfully prepared in a surfactant free system via the radical copolymerization of styrene (St) and different comonomers (acrylic acid, methacrylic acid, and acrylamide) by using a cationic silica sol as the sole emulsifier in Pickering miniemulsion polymerization. The influence of different parameters like pH of the dispersion, comonomer content, and the amount and size of silica nanoparticles on the colloidal stability of the systems, prepared with different comonomers, was examined. The particles' morphology was observed via high‐resolution scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The removal of free silica particles via centrifugation was proved by TEM and SEM, and the content of free and adsorbed silica was quantified via thermogravimetric analysis (TGA). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
Raspberry‐like hybrid nanocapsules with a hydrophobic liquid core were successfully prepared via the copolymerization of styrene, divinylbenzene (DVB), and 4‐vinyl pyridine (4‐VP) in Pickering‐stabilized miniemulsions by using silica particles as the sole emulsifier and hexadecane (HD) as liquid template. When compared with conventional Pickering miniemulsions and Pickering suspensions, the colloidal stability of the current systems is much more sensitive to the variation of reaction parameters such as pH, size, amount of silica particles, and content of 4‐VP. The systems without coagulum were only obtained in a narrow pH range at around 9.5 and by using 12 nm silica particles as emulsifier. The formation of well‐defined raspberry‐like capsules was confirmed by transmission electron microscopy (TEM) and high‐resolution scanning electron microscopy (HRSEM). The stable attachment of silica particles on the surface of hybrid particles was verified by centrifugation and subsequent characterizations, such as Fourier transform infrared spectroscopy, TEM, and HRSEM. The influence of pH and weight content of HD, DVB, and 4‐VP on the particle morphology was extensively investigated. Interestingly, the particle morphology strongly depends on the particle size. When compared with the organic surface‐active surfactant, the formation of capsule morphology could be promoted by the application of silica particles taking advantage of their surface inactivity. The formation mechanisms of capsules/solid particles are discussed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

3.
Polymer/SiO2 nanocomposite microspheres were prepared by double in situ miniemulsion polymerization in the presence of methyl methacrylate, butyl acrylate, γ‐methacryloxy(propyl) trimethoxysilane, and tetraethoxysilane (TEOS). By taking full advantage of phase separation between the growing polymer particles and TEOS, inorganic/polymer microspheres were fabricated successfully in a one‐step process with the formation of SiO2 particles and the polymerization of organic monomers taking place simultaneously. The morphology of nanocomposite microspheres and the microstructure, mechanical properties, thermal properties, and optical properties of the nanocomposite films were characterized and discussed. The results showed that hybrid microspheres had a raspberry‐like structure with silica nanoparticles on the shells of polymer. The silica particles of about 20 nm were highly dispersed within the nanocomposite films without aggregations. The transmittance of nanocomposite film was comparable to that of the copolymer film at around 70–80% from 400 to 800 nm. The mechanical properties and the fire‐retardant behavior of the polymer matrix were improved by the incorporation of silica nanoparticles. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3128–3134, 2010  相似文献   

4.
A series of SiO2/poly(styrene‐co‐butyl acrylate) nanocomposite microspheres with various morphologies (e.g., multicore–shell, normal core–shell, and raspberry‐like) were synthesized via miniemulsion polymerization. The results showed that the morphology of the composite latex particles was strongly influenced by the presence or absence of the soft monomer (butyl acrylate), the particle sizes of the silica, and the emulsifier concentrations. The incorporation of the soft monomer helped in forming the multicore–shell structure. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3202–3209, 2006  相似文献   

5.
A universal method for the synthesis of water‐based inorganic–polymer hybrid particles was developed in which no organic solvent is required. To demonstrate the versatility of this process, zinc phosphate, calcium carbonate, and barium sulfate were chosen as different pigment examples which additionally can be utilized for functional coating applications. Furthermore, a complex polymeric composition based on epoxy–acrylic–styrene was chosen to illustrate the versatility from a soft matter point of view. The overall synthesis process was carried out by coemulsification of two inverse miniemulsions, containing two precursors, surrounded with a polymerizable continuous phase. This was then transferred to a direct miniemulsion by addition to a surfactant solution and subsequent homogenization followed by radical polymerization of the vinylic monomers. To our knowledge, this is the first work where a polymerizable continuous phase has been used in an inverse miniemulsion formation followed by transfer to a direct miniemulsion, followed by polymerization, so that the result is a water‐based dispersion. The resultant dispersion was characterized by dynamic light scattering; the particles were investigated via transmission electron microscopy with in situ determination of crystallinity using electron diffraction. Elemental analysis was also performed for the particles and the polymerized miniemulsions using X‐ray fluorescence and inductively coupled plasma‐optical emission spectroscopy, respectively. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
We herein report a facile method to prepare the submicron‐sized raspberry‐like polystyrene/polyacrylonitrile particles with anisotropic properties and controllable structure via γ‐radiation‐induced seeded emulsion polymerization under ambient pressure and at room temperature, in which the monodisperse crosslinked styrene‐divinylbenzene‐acrylic acid terpolymer (P(S‐DVB‐AA)) particles were used as seed particles and acrylonitrile (AN) as the second monomer. The influence of the weight ratio of polymer/monomer, the absorbed dose rate, the absorbed dose, and the dispersion medium on the morphology of the as‐prepared particles was investigated. The final products were thoroughly characterized by Fourier transform infrared spectroscopy (FTIR), field‐emission scanning electron microscopy, and transmission electron microscopy. The results showed that the raspberry‐like particles could be fabricated in high yield. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

7.
Graphite oxide (GO) was prepared and immobilized with dodecyl isobutyric acid trithiocarbonate (DIBTC) reversible addition‐fragmentation chain transfer (RAFT) agent. The hydroxyl groups of GO were attached to the DIBTC RAFT agent through an esterification process. The resultant modified GO was used for the preparation of polystyrene (PS)/graphite nanocomposites in miniemulsion polymerization. The RAFT‐grafted GO (GO‐DIBTC) at various loadings was dispersed in styrene monomer, and the resultant mixtures were sonicated in the presence of a surfactant (sodium dodecylbenzene sulfonate) and a hydrophobe (hexadecane) to form miniemulsions. The stable miniemulsions thus obtained were polymerized using azobisisobutyronitrile as the initiator to yield encapsulated PS‐GO nanocomposites. The molar mass and polydispersity index of PS in the nanocomposites depended on the amount of RAFT‐grafted GO in the system, in accordance with the features of the RAFT polymerization method. The PS‐GO nanocomposites were of exfoliated morphology, as confirmed by X‐ray diffraction and transmission electron microscopy measurements. The thermal stability and mechanical properties of the PS‐GO nanocomposites were better than those of the neat PS polymer. Furthermore, the mechanical properties were dependent on the modified GO content (i.e., the amount of RAFT‐grafted GO). © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
Poly(acrylic acid‐co‐sodium acrylate)/zinc oxide, P(AA‐SA)/ZnO, composite latex particles were synthesized by inverse miniemulsion polymerization. The ZnO nanoparticles were prepared by hydrothermal synthesis and undergone oleic acid (OA) surface treatment. The X‐ray diffraction pattern and FT‐IR spectra characterized the crystal structure and functional groups of OA‐ZnO nanoparticles. An appropriate formulation in preparing P(AA‐SA) latex particles, ensuring the dominant in situ particle nucleation and growth, was developed in our experiment first. Sodium hydroxide was chosen as a costabilizer, because of its ability to increase the deprotonation of acylic acid and enhance the hydrophilicity of monomer, acrylic acid besides providing osmotic pressure. The growth mechanism of P(AA‐SA)/ZnO composite particles was proposed. The OA‐ZnO nanoparticles were adsorbed on or around the surface of P(AA‐SA) latex particles by hydrophobic interaction, thus enhanced the interfacial tension over latex particles. The P(AA‐SA)/ZnO composite latex particles owned better thermal stability than pure latex particles. The pH regulation capacity was excellent for both ZnO and P(AA‐SA) particles. Combining P(AA‐SA) and ZnO nanoparticles into composite particles, the performance in pH regulation and UV shielding was discussed from our experimental results. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8081–8090, 2008  相似文献   

9.
Hybrid silica/polystyrene nanoparticles were synthesized by miniemulsion polymerization. With the objective to prepare core‐shell hybrid nanoparticles having narrow particle size distributions (PSDs) as well as a high degree of silica encapsulation, the effect of adding surface modifiers, the size of silica nanoparticles, the ratio styrene/silica, the surfactant concentration, and the presence of ethanol in the reaction mixture were studied. A synergistic effect was observed using oleic acid (OA) together with 3‐(trimethoxysilyl)propyl methacrylate (TPM) in the compatibilization step between the organic phase (monomer) and inorganic nanoparticles (silica). Mono and multinuclear eccentric core‐shell hybrid nanoparticles were obtained. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 935–948, 2009  相似文献   

10.
We report on the synthesis of snowman‐like magnetic/nonmagnetic nanocomposite asymmetric particles (SMNAPs) via seeded emulsion polymerization initiated by γ‐ray radiation. In situ formation of magnetite in the presence of the emulsified poly(styrene‐divinylbenzene‐acrylic acid) microspheres affords raspberry‐like magnetic nanocomposite particles, which are used as seeds for further seeded emulsion polymerization induced by γ‐ray radiation. We study the effect of the kind of surfactant, the kind and content of second monomer, and the content of swelling agent on the morphologies of the final nanocomposite particles. It is found that SMNAPs can be fabricated in high yield using 12‐acryloxy‐9‐octadecenoic acid as the surfactant and styrene as the second monomer with the addition of 2‐butanone (a swelling agent). The as‐synthesized SMNAPs may serve as magnetically controllable solid surfactants to stabilize O/W immiscible mixtures, which preferentially orientated at the interface. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
A series of SiO2/PMMA composite particles with different morphologies were prepared by conventional emulsion polymerization by the aid of acid–base interaction between the silanol groups of unmodified silica particles and the amino groups of 4‐vinylpyridine. In this approach, no surface treatment for nanosilica particles was required. The morphologies of composite particles, for example, multicore–shell, raspberry‐like, and conventional core–shell, could be controlled by modulating emulsifier content, monomer/silica ratio, silica size, and monomer feed method. The possible particle formation mechanisms were discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3807–3816, 2006  相似文献   

12.
Ethyl cellulose (EC) was incorporated into copolymer latexes via miniemulsion polymerization. The effects of EC viscosity and EC content on droplet size, particle size, and polymerization kinetics were investigated. The higher the EC content and viscosity, the larger the droplet size and the less stable the latex suspension. Small droplets that could be efficiently nucleated were formed for the lower‐viscosity EC but the latex still showed limited colloidal stability. This was attributed to some phase‐incompatibility between EC and the acrylic polymer. These stability issues were overcome by using an oil‐soluble initiator and a crosslinker. The later enabled to physically entrap EC inside the polymer particles, whereas the former allowed in situ grafting of the growing acrylic radicals to the EC backbone decreasing thereby the extent of phase separation. Thermal‐mechanical analyses evidenced that the films obtained from the hybrid latexes displayed better properties than the EC‐free latex films or the physical blends. This supports the hypothesis of formation of hybrid latexes that synergistically combine the properties of the acrylic matrix and the EC polymer. Interestingly, a significant increase of the elastic modulus was observed between 50 and 90 °C. This mechanical reinforcement was tentatively attributed to the formation of a percolating EC‐based hybrid phase. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2329–2339, 2010  相似文献   

13.
A water‐based magnetite ferrofluid, with an average size of about 10 nm, was prepared in a first step by the chemical coprecipitation of ferrous and ferric salts. Oil‐based styrene (St) magnetite ferrofluid was obtained by the acidification of the water‐based magnetite ferrofluid and the dispersion of the acidified magnetite in St. Magnetic polymeric composite particles (MPCPs) were prepared by miniemulsion polymerization in the presence of the oil‐based St magnetite ferrofluid with hexadecane as a hydrophobe, 2,2′‐azobisisobutyronitrile as an initiator, and sodium dodecyl sulfate as an emulsifier. Methacrylic acid was used as a comonomer, and hydroxyethyl cellulose and polyvinylpyrrolidone were used as aid stabilizers subsequently. With the aim of improving the encapsulation degree of magnetite, avoiding pure polymer particles and exposed magnetite particles, and obtaining the narrowest particle size distributions, the encapsulation conditions of magnetite were investigated in detail. The results show that miniemulsion polymerization is an effective method for encapsulating magnetite into a hydrophobic polymer successfully. Exposed magnetite particles and pure polymer particles can be avoided completely by the selection of the appropriate preparation conditions. All the resulting MPCPs exhibited superparamagnetism and possessed some magnetic response. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4187–4203, 2006  相似文献   

14.
Two hydrophobic vinyl saccharide monomers based on D ‐glucose and D ‐fructose were polymerized by employing the reversible addition‐fragmentation transfer (RAFT) miniemulsion polymerization technique to prepare well‐designed glycopolymers. Three dithiobenzoate‐RAFT agents [S?C(Ph)S? R], 1‐phenylethyl dithiobenzoate (PED), 2‐phenylprop‐2‐yl dithiobenzoate (PPD), and 2‐cyanoprop‐2‐yl dithiobenzoate (CPD), were used to control the growth of polymer chains. The best results were obtained in the presence of the PPD‐RAFT agent and the formed polymers have polydispersity index's (PDI) lower than 1.15. Under adequate miniemulsion polymerization conditions, a glycopolymer with PDI of 1.1 and molecular weight of 5 × 104 g/mol has been successfully synthesized in a short reaction time of 100 min. Furthermore, some block copolymers containing saccharide segment with butyl or methyl methacrylate were prepared. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
The nanoencapsulation of hydrophobic compounds by miniemulsion polymerization, a convenient one‐step encapsulation technique for nanocapsules, was investigated in terms of the thermodynamics and kinetics. The encapsulation was achieved by polymerization inducing phase separation within minidroplets dispersed in an aqueous phase. Thermodynamic factors (the level and type of surfactant, the level of the hydrophilic comonomer, and the monomer/paraffin ratio), kinetic factors (the level of the crosslinking agent or chain‐transfer agent), and nucleation modes were all found to have a great influence on the latex morphology. Specifically, for a styrene/paraffin system, there were optimum levels of sodium dodecyl sulfate (1.0 wt %), the hydrophilic comonomer (1.0 wt % methyl acrylate acid), and the chain‐transfer agent (0.2 wt % n‐dodecanethiol) for obtaining well‐defined nanocapsules of paraffin with a styrene/paraffin ratio of 1:1. When the styrene/paraffin ratio was reduced, however, it was more difficult to achieve a fully encapsulated particle morphology. Homogeneous nucleation could compete with encapsulation, and this resulted in a pure polymer particle and a half‐moon morphology. Conditions were also found under which complete encapsulation could be observed with a water‐soluble initiator (potassium persulfate), contrary to certain reports. Replacing potassium persulfate with an oil‐soluble initiator (2,2‐azobisisobutyronitrile) had little influence on the morphology under those conditions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2145–2154, 2004  相似文献   

16.
Yttrium oxysulfide upconverting phosphor particles can absorb infrared light and emit dopant‐dependent visible phosphorescence. This unique optical property has been used for particle‐based immunoassay applications. In this study, upconverting phosphor particles were encapsulated with a functionalized polymer (carboxylated polystyrene) shell layer via several approaches, which included the following: (1) the physical adsorption of the carboxylated polystyrene polymer onto the phosphor surfaces, (2) the miniemulsification of the preformed carboxylated polystyrene in a solvent in the presence of the phosphor particles and the subsequent stripping off of the solvent, and (3) the miniemulsification and miniemulsion copolymerization of styrene and methacrylic acid in the presence of the phosphor particles with hexadecane as a costabilizer in combination with a surfactant (sodium dodecyl sulfate, sodium dodecylbenzene sulfonate, or sodium dihexyl sulfosuccinate). Miniemulsion technology proved to be the most effective method for forming a functionalized polymeric nanoshell surrounding the phosphor particles. The morphology of the encapsulated phosphor particles was found to vary from symmetric core–shell (i.e., a uniform nanoshell layer with varying shell thicknesses), asymmetric core–shell, dumbbell‐like, or raspberry‐like partial encapsulation to multiparticle encapsulation. The amount of multiparticle encapsulation could be reduced by the postaddition of a surfactant, but it could not be eliminated completely. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1038–1054, 2007  相似文献   

17.
Nanocapsules with an oily core and an organic/inorganic hybrid shell were elaborated by miniemulsion (co)polymerization of styrene, divinylbenzene, γ‐methacryloyloxy propyl trimethoxysilane, and N‐isopropyl acrylamide. The hybrid copolymer shell membrane was formed by polymerization‐induced phase separation at the interface of the oily nanodroplets with water. It was shown that the size, size distribution, and colloidal stability of the miniemulsion droplets were extremely dependent on the nature of the oil phase, the monomer content and the surfactant concentration. The less water‐soluble the hydrocarbon template and the higher the monomer content, the better the droplet stability. The successful formation of nanocapsules with the targeted core‐shell morphology (i.e., a liquid core surrounded by a solid shell) was evidenced by cryogenic transmission electron microscopy. Both nanocapsules and nanoparticles were produced by polymerization of the miniemulsion droplets. The proportion of nanoparticles increased with increasing monomer concentration in the oil phase. These undesirable nanoparticles were presumably formed by homogeneous nucleation as we showed that micellar nucleation could be neglected under our experimental conditions even for high surfactant concentrations. The introduction of γ‐methacryloyloxy propyl trimethoxysilane was considered to be the main reason for homogeneous nucleation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 593–603, 2010  相似文献   

18.
Latex particles based on 1,4‐polybutadiene were synthesized via dispersion ring‐opening metathesis copolymerization of 1,5‐cyclooctadiene with a α‐norbornenyl poly(ethylene oxide) macromonomer. Stable but polydisperse colloidal dispersions in the 50 nm to 10 μm size range were obtained. In this work, particular attention was paid to the effects of the kinetics of copolymerization on the structure of the graft copolymers formed and on the onset of turbidity. Strategies to prepare monodisperse polybutadiene particles were also designed through the growth of a polybutadiene shell from a well‐defined polynorbornene seed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1154–1163, 2004  相似文献   

19.
The SiO(2)/polystyrene nanocomposite particles were synthesized through miniemulsion polymerization by using sodium lauryl sulfate surfactant (SLS), hexadecane costabilizer in the presence of silica particles coated with methacryloxy(propyl)trimethoxysilane. Core-shell or other interesting morphology composite particles were obtained depending on the size of the silica particles and the surfactant concentration employed. By adjusting these parameters, it was possible to control the size and morphology of the composite particles.  相似文献   

20.
Magnetic iron oxide (magnetite, Fe3O4) nanoparticles were encapsulated with polystyrene to give a stable water‐based magnetic polymer latex, using the miniemulsion polymerization technique. The resulting magnetic latexes were characterized with transmission electron microscopy (TEM), dynamic light scattering (DLS), vibrating sample magnetometer measurements (VSM), and 57Fe Mössbauer spectroscopy measurements. TEM revealed that all magnetite nanoparticles were embedded in the polymer spheres, leaving no empty polystyrene particles. The distribution of magnetite particles within the polystyrene spheres was inhomogeneous, showing an uneven polar appearance. The DLS measurements indicated a bimodal size distribution for the particles in the latexes. According to our magnetometry and Mössbauer spectroscopy data, the encapsulated magnetite particles conserve their superparamagnetic feature when they are separated in the polymer matrix. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4802–4808, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号