首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A poly(L ‐histidine) (PLH)‐carbohydrate conjugate has been synthesized as a new macromolecule extracting pH‐dependent properties of PLH with imidazole groups. Because of poor water solubility at physiological pH, the application of PLH with a pKa around 6.0 has been limited in spite of the native possession of the pH‐dependent property change at endosomal pH. Although the PLH modified with aliphatic primary amino groups suddenly precipitated out of the aqueous medium above pH 6.0 as a result of the deprotonation of the imidazole groups, the water solubility of PLH was improved at physiological pH by the conjugation of the aminated PLH with hydrophilic maltopentaose. The resulting PLH‐maltopentaose conjugates and metalloporphyrins formed the complexes which varied their assembling structure below pH 6.0. The PLH‐maltopentaose would be the fundamental compound for designing various drug carriers with the pH sensitivity at endosomal pH. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
In this study, poly(L ‐histidine) with several aminoethyl groups, i.e. aminated poly(L ‐histidine), is reported to be able to make complexes with DNA and to transfect cells in vitro in the presence of serum. The present study was performed to determine whether the pH of the medium had an influence on the complex formation with DNA, on the cell membrane fusion activity and on the transfection efficiency. Agarose gel retardation assays proved that the polyion complex formation of the aminated poly(L ‐histidine) with DNA was affected by pH of the medium, owing to the basicity (protonation–deprotonation) of the imidazole groups with a pKa value around 6.0. Hemolysis assay showed that the resulting DNA complex enhanced membrane disruptive ability at endosomal pH. The aminated poly(L ‐histidine) gene carrier demonstrated significant transfection efficacy which was decreased by the inclusion of chloroquine as an endosomolytic agent. These results suggest that the aminated poly(L ‐histidine) promises to be a new pH‐sensitive DNA carrier for endosomal escape. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
To create a novel vector for specifically delivering anticancer therapy to solid tumors, we used diafiltration to synthesize pH‐sensitive polymeric micelles. The micelles, formed from a tetrablock copolymer [poly(ethylene glycol)‐b‐poly(L ‐histidine)‐b‐poly(L ‐lactic acid)‐b‐poly(ethylene glycol)] consisted of a hydrophobic poly(L ‐histidine) (polyHis) and poly(L ‐lactic acid) (PLA) core and a hydrophilic poly(ethylene glycol) (PEG) shell, in which we encapsulated the model anticancer drug doxorubicin (DOX). The robust micelles exhibited a critical micellar concentration (CMC) of 2.1–3.5 µg/ml and an average size of 65–80 nm pH 7.4. Importantly, they showed a pH‐dependent micellar destabilization, due to the concurrent ionization of the polyHis and the rigidity of the PLA in the micellar core. In particular, the molecular weight of PLA block affected the ionization of the micellar core. Depending on the molecular weight of the PLA block, the micelles triggering released DOX at pH 6.8 (i.e. cancer acidic pH) or pH 6.4 (i.e. endosomal pH), making this system a useful tool for specifically treating solid cancers or delivering cytoplasmic cargo in vivo. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Biocompatible lipo‐histidine hybrid materials conjugated with IR820 dye show pH‐sensitivity, efficient intracellular delivery of doxorubicin (Dox), and intrinsic targetability to cancer cells. These new materials form highly uniform Dox‐loaded nanosized vesicles via a self‐assembly process showing good stability under physiological conditions. The Dox‐loaded micelles are effective for suppressing MCF‐7 tumors, as demonstrated in vitro and in vivo. The combined mechanisms of the EPR effect, active internalization, endosomal‐triggered release, and drug escape from endosomes, and a long blood circulation time, clearly prove that the IR820 lipopeptide DDS is a safe theranostic agent for imaging‐guided cancer therapy.

  相似文献   


5.
Normal mode analysis and their dispersion for poly(L ‐histidine) (PLH) are reported by using Urey Bradley force field and Fourier Transform IR PLH exists in the α helical form. There are 17 atoms in one residue, which gives rise to 51 dispersion curves. To simplify, it is convenient to discuss the normal frequencies under three separate heads namely amide modes, side chain modes, and mixed mode. The calculated frequencies are found to be in reasonably good agreement with the Fourier Transform IR spectra. There exists exchange of character, attraction, and repulsion for selective dispersion curves with change in the phase value. Contributions to the heat capacity were calculated separately for the side chain, backbone, and mixed modes. The major contribution comes from the side chain and mixed modes. The sum of these three contributions gives the total heat capacity, which is in agreement with the reported experimental value. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 128–137, 2010  相似文献   

6.
A series of novel multi‐responsive disulfide cross‐linked polypeptide nanogels has been synthesized by a one‐step ring‐opening polymerization process. The pH‐responsive core of the prepared nanogels was based on poly(L‐histidine), the difunctional N‐carboxy anhydride of l ‐cystine (l ‐Cys‐NCA) was used as a reduction‐cleavable cross‐linking agent, while the outer hydrophilic corona was comprised of a poly(ethylene oxide) block. Extensive molecular characterization studies were conducted in order to confirm the formation of the desired polymeric nanostructures and also to prove their responsiveness to external stimuli within the physiological values of healthy and cancer tissues. Furthermore, the disruption of the disulfide‐bond linkages between the polymeric chains was achieved by the presence of the reductive tripeptide glutathione (GSH), leading to size variations that were monitored by dynamic light scattering (DLS) and size‐exclusion chromatography (SEC). “Stealth” properties of the formed nanostructures were examined by zeta potential measurements. The described nanogels are clearly promising candidates for drug delivery applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1278–1288  相似文献   

7.
In this study, a novel drug‐carrying micelle composed of methoxy poly(ethylene glycol) (mPEG)‐b‐poly(L‐lactic acid) (PLLA) with gas‐forming carbonate linkage was fabricated. Here, the gas‐forming carbonate linkage was formed by the chemical coupling of the terminal hydroxyl group of the PLLA block and benzyl chloroformate (BC). mPEG‐b‐PLLA‐BC was self‐organized in aqueous solution: the PEG block on the hydrophilic outer shell and the PLLA‐BC block in the hydrophoboic innor core. The cleavage of carbonate linkage by hydrolysis and formation of carbon dioxide nanobubbles in the micellar core enabled an accelerated release of the encapsulated anticancer drug (doxorubicin: DOX) from the mPEG‐b‐PLLA‐BC micelles. The amount of drug (DOX) released from the mPEG‐b‐PLLA‐BC micelle was higher than that from the conventional mPEG‐b‐PLLA micelle, which allowed for increased in vitro toxicity against KB tumor cells. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A series of novel temperature‐ and pH‐responsive graft copolymers, poly(L ‐glutamic acid)‐g‐poly(N‐isopropylacrylamide), were synthesized by coupling amino‐semitelechelic poly(N‐isopropylacrylamide) with N‐hydroxysuccinimide‐activated poly(L ‐glutamic acid). The graft copolymers and their precursors were characterized, by ESI‐FTICR Mass Spectrum, intrinsic viscosity measurements and proton nuclear magnetic resonance (1H NMR). The phase‐transition and aggregation behaviors of the graft copolymers in aqueous solutions were investigated by the turbidity measurements and dynamic laser scattering. The solution behavior of the copolymers showed dependence on both temperature and pH. The cloud point (CP) of the copolymer solution at pH 5.0–7.4 was slightly higher than that of the solution of the PNIPAM homopolymer because of the hydrophilic nature of the poly(glutamic acid) (PGA) backbone. The CP markedly decreased when the pH was lowered from 5 to 4.2, caused by the decrease in hydrophilicity of the PGA backbone. At a temperature above the lower critical solution temperature of the PNIPAM chain, the copolymers formed amphiphilic core‐shell aggregates at pH 4.5–7.4 and the particle size was reduced with decreasing pH. In contrast, larger hydrophobic aggregates were formed at pH 4.2. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4140–4150, 2008  相似文献   

9.
N‐Isopropylacrylamide/itaconic acid copolymeric hydrogels were prepared by irradiation of the ternary mixtures of N‐isopropylacrylamide/itaconic acid/water by γ‐rays at ambient temperature. The dependence of swelling properties and phase transitions on the comonomer concentration and temperature were investigated. The hydrogels showed both temperature and pH responses. The effect of comonomer concentration on the uptake and release behavior of the hydrogels was studied. Methylene blue (MB) was used as a model drug for the investigation of drug uptake and release behavior of the hydrogels. The release studies showed that the basic parameters affecting the drug release behavior of the hydrogels were pH and temperature of the solution. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
Phosphorylcholine‐containing poly(L‐lactide) (PLLA‐PC) was synthesized by ring‐opening polymerization of L‐lactide in the presence of glycerophosphorylcholine originated from egg lecithin. Self‐assembling micelles were then obtained by film hydration, ultrasonication and stirring. Transmission electron microscopy and confocal laser scanning microscopy confirmed the micellar structure with hydrophobic core and hydrophilic shell. The critical micellar concentration (CMC) value of PLLA‐PC was only 1/50 that of naturally occurring PC, in agreement with a better surfactant property of the former. Dynamic light scattering showed that the size and size distribution of micelles varied with dilution, but the CMC was independent of the concentration of NaCl solution within 0.9 wt%, indicating that the micelles could be stable upon intravenous injection. In addition, the micelle solution could be stored at 4 °C over 30 days without any noticeable changes, whereas at 37 °C, the size, size distribution and the number of micelles decreased over time due to degradation. The solubility of clofazimine, a highly hydrophobic drug, was found to be 11.9 µg/ml in the PLLA‐PC micellar solution, which was 40 times that in pure water. This preliminary study suggests that PLLA‐PC micelles present a great potential as delivery system for hydrophobic drugs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Morphology is presented as a powerful tool to control the in vitro degradation and drug release characteristics of novel drug delivery microspheres prepared from homopolymer blends of 1,5‐dioxepan‐2‐one, DXO, and L ‐lactide, L‐LA. Their performance in this respect was compared to analogous P(L‐LA‐co‐DXO) microspheres. Blends formed denser and less porous microspheres with a higher degree of matrix crystallinity than copolymers of corresponding L‐LA:DXO composition. The morphology differences of blends and copolymers, further adjustable by means of component ratio, are shown to have a vital impact on the in vitro performance. Sustained drug delivery was obtained from both copolymers and blends. Molecular weight loss was retarded and diffusion‐mediated release was inhibited in the latter case, further delaying the release process. The effects of storage on the physicochemical properties of these systems were evaluated under desiccated and moist conditions for 5 months. Storage‐induced physicochemical changes, such as matrix crystallization and molecular weight decrease, were accelerated at higher relative humidities. P(L‐LA‐co‐DXO) demonstrated higher moisture sensitivity than a PLLA‐PDXO blend of corresponding composition. The more crystalline and dense morphology of blend microspheres may thus be considered an improvement of the storage stability. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 786–796, 2000  相似文献   

12.
pH‐sensitive poly (vinylidene fluoride) (PVDF)/poly (acrylic acid) (PAA) microgels membranes are prepared by phase inversion of the N, N‐dimethylformamide solution containing PAA microgels and PVDF in aqueous solution. The composition and structure of the blend membrane are investigated by Fourier transform infrared spectra, X‐ray photoelectron spectroscopy measurements, thermo gravimetric analysis, field‐emission scanning electron microscope and atomic force microscope. The results indicate the surface and cross section of the blend membranes have a porous structure with PAA microgels immobilized inside the pore and on the membrane surface. The blend PVDF membranes exhibit pH‐sensitive water flux, with the most drastic change in permeability observed between pH 3.7 and 6.3. The blend membranes are fouled by bovine serum albumin, and their antifouling property is enhanced by increasing PAA microgels, mainly derived from the improved hydrophilic property. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Poly(L ‐lactide) (PLLA) with terminal primary amino groups (PLLA‐NH2) was synthesized and used to construct PLLA‐grafted pullulan (Pul‐g‐PLLA). It consisted of a hydrophilic carboxymethyl Pul (CM‐Pul) main chain and hydrophobic PLLA graft chains that were created through a direct coupling reaction between PLLA‐NH2 and CM‐Pul using 2‐ethoxy‐1‐(ethoxycarbonyl)‐1,2‐dihydroquinoline as a condensation reagent. Pul‐g‐PLLAs with over 78 wt % sugar unit content were found to form nanometer‐sized aggregates in water. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5482–5487, 2004  相似文献   

14.
Biocompatible pH‐sensitive semi‐interpenetration polymeric network hydrogels (semi‐IPN) based on water‐soluble N‐carboxyethyl chitosan (CECS) and 2‐hydroxyethyl methacrylate (HEMA) were synthesized by the photopolymerization technique. pH‐sensitivity, cytotoxicity, morphology, mechanical property, and water state of hydrogel were investigated by a swelling test, methylthiazolydiphenyl‐tetrazolium bromide (MTT) assay, scanning electron microscopy (SEM), universal testing machine, and differential scanning calorimetry (DSC), respectively. The drug release studies were carried out using 5‐Flurouracil as the model drug. The results indicated that the hydrogels were sensitive to pH of the medium and its wet state had good mechanical properties. The results of cytotoxicity and prolonged drug release characteristics revealed the suitability of the hydrogels as drug delivery matrices. The release kinetics was evaluated by fitting the experimental data to standard release equations, and the best fit was obtained with the Higuchi model of the hydrogel. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Aqueous solution properties of amphiphilic P(AA‐cotBA)‐b‐PPO‐b‐ P(AA‐cotBA) copolymers having various tBA contents are presented in this article. These copolymers show pH‐sensitive behavior depending on tBA/AA ratio. Hydrophobic interactions between tBA units leading to pH‐dependent macroscopic aggregates were evidenced by turbidimetry. The aggregation behavior of the PPO middle block was concealed in presence of tBA units. The formation of water‐soluble aggregated objects was characterized by Asymmetrical Flow Field Flow Fractionation (AsF4). By increasing tBA/AA ratio, we observed an increase of aggregates size as well as a reduction of the critical concentration aggregation. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1944–1949  相似文献   

16.
In this study, a novel thermo‐sensitive poly(N‐acryloylglycinates) was prepared in order to get a potential drug release carrier. The corresponding monomers and the polymers were characterized with Fourier‐transform infrared (FTIR) and 1H NMR. The thermo‐sensitivity of the poly(N‐acryloylglycinates) was evaluated by measuring their lower critical solution temperatures (LCST) in water, inorganic salt solution, and different pH solutions. The results indicated that poly(N‐acryloylglycine methyl ester) (NAGME) and poly(N‐acryloylglycine ethyl ester) (NAGEE) exhibit a reversible thermo‐sensibility in their aqueous solutions at 61.5 and 12.5°C, respectively. However, no thermo‐sensitive behavior of poly(N‐acryloylglycine propyl ester) (NAGPE) was found due to its over hydrophobicity. The swelling studies on hydrogels were carried out at different temperatures, in different pH, and inorganic salt solutions. The hydrogels showed a remarkable phase transition at about 35°C with changing temperature. The release rate of caffeine from the thermo‐sensitive hydrogel was apparently decreased as the crosslinker content increased and temperature decreased. Seventy five percent caffeine from the polymeric hydrogel with 5% NMBA (N, N‐methylenebis(acrylamide)) was released at room temperature within 240 min, whereas 95.4% caffeine diffused into the medium at 37°C. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Solid‐state characterization of poly(L ‐histidine) was obtained via differential scanning calorimetry, thermogravimetric analysis, optical microscopy, and infrared spectroscopy. The glass transition temperature of poly(L ‐histidine) is 169°C. This thermal transition has not been reported previously. Poly(L ‐histidine)'s Tg increases when complexes are produced with the following divalent transition metal chlorides: cobalt chloride hexahydrate, nickel chloride hexahydrate, copper chloride dihydrate, and anhydrous zinc chloride. At 10 mol % salt, nickel chloride increases Tg by 69°C. The enhancement in poly(L ‐histidine)'s Tg correlates well with ligand field stabilization energies for pseudo‐octahedral dn complexes (n = 7, 8, and 10) from the first row of the d‐block. However, d9 copper(II) complexes do not conform to this empirical correlation. Infrared spectroscopic evidence indicates that these metal chlorides form complexes with the imidazole ring in the histidine side group and the amide group in the main chain of the polymer. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 301–309, 1999  相似文献   

18.
Poly(N‐vinyl‐pyrrolidone) (PVP) hydrogel has been considered as a very interesting and promising thermosensitive material. The most vital shortcoming of PVP hydrogel as thermosensitive material is that it does not exhibit thermosensitivity under usual conditions. In this work, semi‐interpenetrating polymer network (semi‐IPN) hydrogels based on PVP and carboxymethylcellulose (CMC) were prepared. The volume phase transition temperature (VPTT) of the hydrogels was determined by swelling behavior and differential scanning calorimetry (DSC). The results showed that the VPTT was significantly dependent on CMC content and the pH of the swelling medium. The amount of CMC in the semi‐IPN hydrogels was 0.050, 0.075, and 0.100 g, the VPTT in buffer solution of pH 1.2 was 29.9 °C, 27.5 °C and 24.5 °C, respectively. In addition, the VPTT occurred in buffer solution of pH 1.2, but did not appear in alkaline medium. Bovine serum albumin (BSA) as a model drug was loaded and the in vitro release studies were carried out in different buffer solutions and at different temperatures. The results of this study suggest that PVP/CMC semi‐IPN hydrogels could serve as potential candidates for protein drug delivery in the intestine. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1749–1756, 2010  相似文献   

19.
20.
Block copolymers of poly(glycidol)‐b‐poly(4‐vinylpyridine) were obtained by ATRP of 4‐vinylpyridine initiated by ω‐(2‐chloropropionyl) poly(glycidol) macroinitiators. By changing the monomer/macroinitiator ratio in the synthesis polymers with varied P4VP/PGl molar ratio were obtained. The obtained block copolymers showed pH sensitive solubility. It was found that the linkage of a hydrophilic poly(glycidol) block to a P4VP influenced the pKa value of P4VP. DLS measurements showed the formation of fully collapsed aggregates exceeding pH 4.7. Above this pH values the collapsed P4VP core of the aggregates was stabilized by a surrounding hydrophilic poly(glycidol) corona. The size of the aggregates depended significantly upon the composition of the block copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1782–1794, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号