首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, the synthesis and the functionalization of well‐defined, narrow polydispersity (polydispersity index < 1.2) star polymers via reversible addition‐fragmentation chain transfer polymerization is detailed. In this arm first approach, the initial synthesis of a poly(pentafluorophenyl acrylate) polymer, and subsequent, cross‐linking using bis‐acrylamide to prepare star polymers, has been achieved by reversible addition fragmentation chain transfer polymerization. These star polymers were functionalized using a variety of amino functional groups via nucleophilic substitution of pentafluorophenyl activated ester to yield star polymers with predesigned chemical functionality. This approach has allowed the synthesis of star glycopolymer using a very simple approach. Finally, the core of the stars was modified via thiol‐ene click chemistry reaction using fluorescein‐o‐acrylate and DyLigh 633 Maleimide. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
A new multivalent glycopolymer platform for lectin recognition is introduced in this work by combining the controlled growth of glycopolymer brushes with highly specific glycosylation reactions. Glycopolymer brushes, synthetic polymers with pendant saccharides, are prepared by surface‐initiated atom transfer radical polymerization (SI‐ATRP) of 2‐O‐(N‐acetyl‐β‐d ‐glucosamine)ethyl methacrylate (GlcNAcEMA). Here, the fabrication of multivalent glycopolymers consisting of poly(GlcNAcEMA) is reported with additional biocatalytic elongation of the glycans directly on the silicon substrate by specific glycosylation using recombinant glycosyltransferases. The bioactivity of the surface‐grafted glycans is investigated by fluorescence‐linked lectin assay. Due to the multivalency of glycan ligands, the glycopolymer brushes show very selective, specific, and strong interactions with lectins. The multiarrays of the glycopolymer brushes have a large potential as a screening device to define optimal‐binding environments of specific lectins or as new simplified diagnostic tools for the detection of cancer‐related lectins in blood serum.

  相似文献   


3.
Group transfer polymerization was used to synthesize several series of hydrophilic random and model networks. Cationic random networks were prepared both in bulk and in tetrahydrofuran (THF) using a monofunctional initiator and simultaneous polymerization of monomer and branch units, while a bifanctional initiator was employed in THF for the synthesis of model networks comprising basic or acidic chains. Upon polymerization of the monomer, the latter initiator gives linear polymer chains with two “living” ends, which are subsequently interconnected to a polymer network by the addition of a branch unit. Homopolymer network star polymers were also synthesized in THF by a one‐pot procedure. The synthesis involved the use of a monofunctional initiator and the four‐step addition of the following reagents: (i) monomer, to give linear homopolymers; (ii) branch unit, to form “arm‐first” star polymers; (iii) monomer, to form secondary arms and give “in‐out” star polymers; and, finally (iv) branch unit again, to interconnect the “in‐out” stars to networks. Different networks were prepared for which the degree of polymerization (DP) of the linear chains between junction points was varied systematically. For all networks synthesized, the linear segments, the “arm‐first” and the “in‐out” stars were characterized in terms of their molecular weight (MW) and molecular weight distribution (MWD) using gel permeation chromatography (GPC). The degrees of swelling of both the random and model networks in water were measured and the effects of DP, pH, and monomer type were investigated.  相似文献   

4.
Star‐shaped polypeptide/glycopolymer biohybrids composed of poly(γ‐ benzyl L ‐glutamate) and poly(D ‐gluconamidoethyl methacrylate), exhibiting controlled molecular weights and low polydispersities, were synthesized by the combination of ring‐opening polymerization of γ‐benzyl‐L ‐glutamate N‐carboxyanhydride and the direct atom transfer radical polymerization of unprotected D ‐gluconamidoethyl methacrylate glycomonomer. These biohybrids were characterized in detail by means of FTIR, 1H NMR, gel permeation chromatography, differential scanning calorimetry, and wide angle X‐ray diffraction. Independent of weight fraction of hydrophilic glycopolymer segment, the biohybrids self‐assembled into large spherical micelles in aqueous solution, which had a helical polypeptide core surrounded by a multivalent glycopolymer shell. The deprotected poly(L ‐glutamate)/glycopolymer hybrid exhibited a pH‐sensitive self‐assembly behavior, and the average size of the nanoparticles decreased gradually over the aqueous pH value. Moreover, whatever these biohybrids existed in unimolecular level or glycopolymer‐surfaced nanoparticles, they had specific biomolecular recognition with Concanavalin A compared with bovine serum albumin. Furthermore, star‐shaped biohybrids showed a higher doxorubicin loading efficiency and longer drug‐release time than linear analogues. This potentially provides a platform for fabricating targeted anticancer drug delivery system and studying glycoprotein functions in vitro. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2009–2023, 2009  相似文献   

5.
Two hydrophobic vinyl saccharide monomers based on D ‐glucose and D ‐fructose were polymerized by employing the reversible addition‐fragmentation transfer (RAFT) miniemulsion polymerization technique to prepare well‐designed glycopolymers. Three dithiobenzoate‐RAFT agents [S?C(Ph)S? R], 1‐phenylethyl dithiobenzoate (PED), 2‐phenylprop‐2‐yl dithiobenzoate (PPD), and 2‐cyanoprop‐2‐yl dithiobenzoate (CPD), were used to control the growth of polymer chains. The best results were obtained in the presence of the PPD‐RAFT agent and the formed polymers have polydispersity index's (PDI) lower than 1.15. Under adequate miniemulsion polymerization conditions, a glycopolymer with PDI of 1.1 and molecular weight of 5 × 104 g/mol has been successfully synthesized in a short reaction time of 100 min. Furthermore, some block copolymers containing saccharide segment with butyl or methyl methacrylate were prepared. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
The synthesis of 4‐vinyl‐1,2‐phthalate esters via Suzuki coupling is described, followed by nitroxide‐mediated polymerization to prepare short homopolymers (degree of polymerization [DP] = 10–40, polydispersity index [PDI] = 1.1–1.3). Random copolymers with n‐butyl acrylate (NBA) were prepared. Copolymers rich in phthalate ester residues of medium lengths (DP = 16–48, PDI = 1.2–1.8) and of shorter lengths (DP = 8–17, PDI = 1.2–1.3) were prepared. Copolymers rich in NBA residues were also prepared (DP = 13–19, PDI = 1.2–1.3). All polymers were oily liquids, with glass transitions temperatures undetected between 75 and ?40 °C, indicating these polymeric phthalates hold promise as potential nonmigratory phthalate plasticizers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

7.
Noncovalent functionalization of single‐walled carbon nanotubes (SWNTs) with conjugated polymers enhances SWNT processability and allows for selective dispersion of various SWNT species. Selective dispersions can be obtained by tuning the nature of the polymer, which can involve using various polymer backbones or side‐chains. However, a clear understanding of selectivity determinants is elusive, as the degree of polymerization (DP) has a large effect on SWNT selectivity. Additionally, preparing libraries of conjugated polymers with varying functionality while keeping DP consistent is difficult. Here, we report the utilization of a strained cyclooctyne‐containing conjugated polymer that serves as a versatile scaffold, enabling systematic preparation of a small library of conjugated polymers with different side‐chain functionality, while maintaining a consistent DP. The resulting polymers were used as dispersants for SWNTs, forming supramolecular polymer‐SWNT complexes that were characterized by UV‐Vis‐NIR absorption and Raman spectroscopy. In the series of polymers, we were able to probe the effect of small changes within the side chains, such as the incorporation of a carbonyl group or an aromatic unit, on the quality of the polymer‐SWNT dispersion. The results of these studies provide new insight into the factors that dictate the ability of a polymer to form strong interactions with SWNTs. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2053–2058  相似文献   

8.
Triple stimuli (temperature/pH/photo)‐responsive amphiphilic glycopolymer, poly(2‐(dimethylamino)ethyl methacrylate‐co‐6‐O‐methacryloyl‐1,2,3,4‐di‐O‐isopropylidene‐D‐galactopyranose)‐b‐poly(4‐(4‐methoxyphenylazo)phenoxy methacrylate) [P(DMAEMA‐co‐MAIpGP)‐b‐PMAZO] was synthesized by atom transfer radical polymerization, followed by the hydrolysis of MAIpGP groups, resulting in the target product poly(2‐(dimethylamino)ethyl methacrylate‐co‐6‐O‐methacryloyl‐D‐galactopyranose)‐b‐poly(4‐(4‐methoxyphenylazo)phenoxy methacrylate) [P(DMAEMA‐co‐MAGP)‐b‐PMAZO]. The composition, moleculer weight, and moleculer weight distribution of the resultant polymers were characterized by 1H NMR and gel permeation chromatography. The micelles formed in aqueous solutions were simulated by various chemical and physical stimuli and characterized by dynamic light scattering, transmission electron microscopy, and UV‐vis spectroscopy. It was found that the glycopolymer is responsive to three different types of stimulus (light, temperature, and pH). The poly(2‐(dimethylamino) ethyl methacrylate) segments give thermo‐ and pH‐responsiveness. The presence of the azobenzene moiety endows the block copolymer to exhibit light‐responsiveness due to its reversible trans‐cis isomerization conversion. The triple stimuli‐responsive glycopolymer micelles can simulate biomacromolecues in vivo/in vitro environment and can be expected to open up new applications in various fields. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2131–2138  相似文献   

9.
Activators generated by electron transfer for atom transfer radical polymerization (AGET ATRP) of oligo(ethylene glycol) monomethyl ether methacrylate (OEOMA) was investigated in homogeneous aqueous solution targeting DP = 1000, and in inverse miniemulsion targeting DP = 600, at 30 °C. Several reaction parameters were examined in the preparation of biocompatible, brush‐like, high‐molecular‐weight, water‐soluble polymers. They include concentration of ascorbic acid (AscA), ratio of water to OEOMA, mode of addition of AscA, and ratio of initiator to Cu(II) complex. The results obtained in these studies indicate that AGET ATRP retains all of the benefits of normal ATRP and, additionally, provides a facile route for the preparation of well‐controlled high‐molecular‐weight polymers because of the use of oxidatively stable catalyst precursors. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1771–1781, 2009  相似文献   

10.
在光、热、剪切、酸等条件下 ,聚合物经常发生无规降解 .在有关描述中 ,无规降解过程仅仅被表述为在反应初期聚合物的粘度大幅度下降而单体的含量变化不大 .显然这种描述是粗略的 .由于在确定分子量分布时需要使用昂贵的GPC ,由试验直接考察无规降解成为不太容易进行的研究内容 ,而由模拟 ,则可以很容易的观察到这类反应的变化过程 .关于降解的MonteCarlo模拟 ,有过很多报道[1~ 7] .在这些文章中 ,多是讨论降解过程中 Mn、 Mw 的变化趋势 ,而不涉及具体聚合度的分子数变化情况 .但是在某些情况下 (如多糖的降解 ) ,对具体某聚合度下的…  相似文献   

11.
Atom transfer radical polymerization (ATRP) was used for the preparation and subsequent copolymerization of two acryloyl‐terminated poly(n‐butyl acrylate) macromonomers with different degrees of polymerization (DPnBA = 25 and 42). Homopolymerization of the higher molecular weight macromonomer ( MM1 ; PnBA42‐A, Mn = 5600, DPMM = 42, Mw/Mn = 1.18) resulted in preparation of a densely grafted polymer with a narrow molecular weight distribution (Mw/Mn = 1.14), but with the limited degree of polymerization DP = 12. The ultimate degree of homopolymerization for the lower molecular weight macromonomer ( MM2 ; PnBA25‐A, Mn = 3400, DPMM = 25, Mw/Mn = 1.20) was higher, and DP increased from 12 to 22. The limited DP could be because of progressively increasing steric congestion for macromonomers in approaching the growing chain ends of densely grafted polymers. When MMs were copolymerized with nBA, the reactivity of MM was nearly the same as that of nBA monomer irrespective of the differences in the degree of polymerization of the MMs and the initial molar ratio of nBA to MM. Well‐defined graft polymers with different lengths of backbone and side chains, and different graft density were successfully prepared by “grafting through” ATRP. Tadpole‐shaped and dumbbell‐shaped graft polymers were also synthesized by ATRP. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5454–5467, 2006  相似文献   

12.
Cell surface carbohydrates, usually binding with other biomacromolecules (such as lipids and proteins), are involved in numerous biological functions, including cellular recognition, adhesion, cell growth regulation, and inflammation. Synthetic carbohydrate-based polymers, so-called glycopolymers, are emerging as important well-defined tools for investigating carbohydrate-based biological processes and for simulating various functions of carbohydrates. In this study, a novel two-step sequence for the generation of a glycopolymer layer tethered on a polypropylene microporous membrane is described. First, a UV-induced graft polymerization of 2-aminoethyl methacrylate hydrochloride (AEMA) was carried out on the membrane to generate an amino-functionalized surface, and the effects of polymerization factors (monomer/initiator concentration and UV irradiation time) on the grafting density were studied. Second, sugar moieties were bound with the grafted functional layer to form glycopolymer by the reaction between the amino groups on the membrane surface and carbohydrate lactones. Chemical analysis by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy combined with surface morphology observation by scanning electron microscopy confirmed the graft polymerization of AEMA and the formation of glycopolymer. The decreases of water contact angle and protein adsorption on the membrane revealed the enhancement of hydrophilicity and protein resistance due to the typical characteristics of the glycopolymer tethered on the surface. These results indicated that the novel sequence reported in this work is a facile process to form glycopolymer-modified surfaces.  相似文献   

13.
In this work the synthesis of poly(butyl acrylate)‐b‐poly(2‐{[(D ‐glucosamin‐2‐N‐yl)carbonyl]oxy}ethyl methacrylate) (PBA‐b‐PHEMAGl) diblock glycopolymer and poly(2‐{[(D ‐glucosamin‐2‐N‐yl)carbonyl]oxy}ethyl methacrylate)‐b‐poly(butyl acrylate)‐b‐poly(2‐{[(D ‐glucosamin‐2‐N‐yl)carbonyl]oxy}ethyl methacrylate) (PHEMAGl‐b‐PBA‐b‐PHEMAGl) was performed via atom transfer radical polymerization. Monofunctional and difunctional poly(butyl acrylate) macroinitiators were used to synthesize the well‐defined diblock and triblock glycopolymers by chain extension reaction with the glycomonomer HEMAGl. The self‐assembly of these glycopolymers in aqueous solution was studied by dynamic light scattering and transmission electron microcopy, showing the coexistence of spherical micelles and polymeric vesicles. In addition, the biomolecular recognition capacity of these micelles and vesicles, containing glucose moieties in their coronas, was investigated using the lectin Concanavalin A, Canavalia Ensiformis, which specifically interacts with glucose groups. The binding capacity of Concanavalin A with glycopolymer is influenced by the copolymer composition, increasing with the length of HEMAGl glycopolymer segment in the block copolymer. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Flavan-3-ols consist of flavan-3-ol monomers and polymers with different degrees of polymerization (DP). In this study, flavan-3-ol extracts from grape seeds were well separated into three fractions including monomers, oligomers (2 < DP < 10) and polymers (DP > 10), by means of normal-phase HPLC-MS. The different patterns of these three fractions were analyzed in three Vitis vinifera cultivars ('Shiraz', 'Cabernet Sauvignon' and 'Marselan') seeds from veraison to harvest. The results showed: (1) polymers were the main form of flavan-3-ols in grape seeds and monomers accounted for only a small proportion; (2) the contents of flavan-3-ol monomers in the seeds of three grape cultivars all exhibited a gradually decreasing trend with a little fluctuation, whereas the patterns of the change of contents of oligomers and polymers were extremely different among grape cultivars; the contents of flavan-3-ol oligomers were enhanced in the seeds of 'Cabernet Sauvignon', but were reduced in the other two cultivars; (3) with regard to the proportion of flavan-3-ols with a certain DP to total flavan-3-ols, both flavan-3-ol monomers and flavan-3-ols with low DP fell in proportion, while the flavan-3-ols with high DP increased correspondingly. These findings indicate that flavan-3-ol polymerization in developing seeds is variety-dependent and may be genetically regulated.  相似文献   

15.
We report the synthesis and characterization of sugar-containing microspheres consisting of poly(divinylbenzene) (PDVB) cores onto which chains of galactose- or mannose-bearing polymers have been grafted. PDVB particles prepared by distillation polymerization with a diameter of 2.4 μm containing residual surface vinyl groups were used as starting material. “Grafting from”, “grafting through” and “grafting to” techniques were performed and special interest was laid towards the resulting grafting densities. The surface modification via “grafting from” was conducted by reversible addition fragmentation chain transfer (RAFT) polymerization directly from the surface, whereas thiol-ene chemistry was used to affix glycopolymer chains onto the particle surface. The resulting sugar-covered microspheres were analyzed towards their protein recognition activity with a series of lectins.  相似文献   

16.
The A–A/B–B step‐growth copolymerization between a monomer immobilized in the crystalline state and a monomer mobile in the solution state is demonstrated. One of the two monomers was immobilized as organic ligands of the metal–organic framework (MOF) and polymerized with the mobile guest monomer, resulting in the formation of linear polymers. The polymerization behavior was completely different from that of the solution polymerizations. In particular, the degrees of polymerization (DP) converged to a specific value depending on the MOF structures. The inevitable termination is caused not by imperfectness of the polymerization reaction, but by the selection of the two polymerization partners among the several adjacent immobilized monomers. This is fully supported by the Monte Carlo simulation on the basis of the polymerization mechanism. Precise immobilization of monomers in the supramolecular assemblies is a promising way for the controlled A–A/B–B step‐growth polymerization.  相似文献   

17.
Star poly(methyl methacrylate)s (P*) of various arm lengths and core sizes were synthesized in high yields by the polymer linking reaction in Ru(II)‐catalyzed living radical polymerization. The yields of the star polymers were strongly dependent on the reaction conditions and increased under the following conditions: (1) at a higher overall concentration of arm chains ([P*]), (2) with a larger degree of polymerization (DP) of the arm chains (arm length), and (3) with a larger ratio (r) of linking agents to P* (core size). In particular, the yields sharply increased in a short time at a higher temperature, in a polar solution, and at a higher complex concentration after the addition of linking agents. These star polymers were then analyzed by multi‐angle laser light scattering to determine the weight‐average molecular weight (3.8 × 103 to 1.5 × 106), the number of arm chains per molecule (f = 4–63), and the radius of gyration (Rz = 2–22 nm), which also depended on the reaction conditions (e.g., f and Rz increased as [P*], DP, and r increased). Small‐angle X‐ray scattering analyses of the star polymers showed that they consisted of spheres for which the radius of the microgel core was 2.7 nm. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2245–2255, 2002  相似文献   

18.
The block glycopolymer, poly(2‐(α‐d ‐mannopyranosyloxy)ethyl methacrylate)‐b‐poly(l ‐lactide) (PManEMA‐b‐PLLA), was synthesized via a coupling approach. PLLA having an ethynyl group was successfully synthesized via ring‐opening polymerization using 2‐propyn‐1‐ol as an initiator. The ethynyl functionality of the resulting polymer was confirmed by MALDI‐TOF mass spectroscopy. In contrast, PManEMA having an azide group was prepared via AGET ATRP using 2‐azidopropyl 2‐bromo‐2‐methylpropanoate as an initiator. The azide functionality of the resulting polymer was confirmed by IR spectroscopy. The Cu(I)‐catalyzed 1,3‐dipolar cycloaddition between PLLA and PManEMA was performed to afford PManEMA‐b‐PLLA. The block structure was confirmed by 1H NMR spectroscopy and size exclusion chromatography. The aggregating properties of the block glycopolymer, PManEMA16kb‐PLLA6.4k (M n,PManEMA = 16,000, M n,PLLA = 6400) was examined by 1H NMR spectroscopy, fluorometry using pyrene, and dynamic light scattering. The block glycopolymer formed complicated aggregates at concentrations above 21 mg·L?1 in water. The d ‐mannose presenting property of the aggregates was also characterized by turbidimetric assay using concanavalin A. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 395–403  相似文献   

19.
Well‐defined hyperbranched polystyrenes have been successfully prepared by polymerization of AB2 macromonomer, polystyrene containing an azide group at its one end and two terminal propargyl groups at the other end via click reaction. For preparation of AB2 macromonomers, an ATRP initiator, bispropargyl 2‐bromosuccinate (BPBS) with two propargyl groups and one bromine group was synthesized by the successive bromination and esterification reaction of L ‐aspartic acid. The resulting BPBS initiated the ATRP of St, and subsequently, the terminal bromine groups of (CH≡C)2‐PS‐Brs were substituted by N3 via the reaction with sodium azide resulting the AB2 macromonomer, (CH≡C)2‐PS‐N3 with various molecular weights. All intermediates and the resultant polymers were characterized by GPC, 1H NMR, FTIR, and MALLS methods. The polymerization kinetics study showed fast increase of DP at the initial stage of polymerization and then slow increase of their DP. The final “HyperMacs” have high‐molecular weight up to Mw,MALLS = 340,000 g/mol, their molecular weight distributions were moderately narrow (Mw/Mn = 1.47–1.65). The ratios of [η]H/[η]L of the HyperMacs formed in the polymerization system increased with evolution of polymerization. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 454–462, 2010  相似文献   

20.
A new class of supramolecular and biomimetic glycopolymer/poly(epsilon-caprolactone)-based polypseudorotaxane/glycopolymer triblock copolymers (poly(D-gluconamidoethyl methacrylate)-PPR-poly(D-gluconamidoethyl methacrylate), PGAMA-PPR-PGAMA), exhibiting controlled molecular weights and low polydispersities, was synthesized by the combination of ring-opening polymerization of epsilon-caprolactone, supramolecular inclusion reaction, and direct atom transfer radical polymerization (ATRP) of unprotected D-gluconamidoethyl methacrylate (GAMA) glycomonomer. The PPR macroinitiator for ATRP was prepared by the inclusion complexation of biodegradable poly(epsilon-caprolactone) (PCL) with alpha-cyclodextrin (alpha-CD), in which the crystalline PCL segments were included into the hydrophobic alpha-CD cavities and their crystallization was completely suppressed. Moreover, the self-assembled aggregates from these triblock copolymers have a hydrophilic glycopolymer shell and an oligosaccharide threaded polypseudorotaxane core, which changed from spherical micelles to vesicles with the decreasing weight fraction of glycopolymer segments. Furthermore, it was demonstrated that these triblock copolymers had specific biomolecular recognition with concanavalin A (Con A) in comparison with bovine serum albumin (BSA). To the best of our knowledge, this is the first report that describes the synthesis of supramolecular and biomimetic polypseudorotaxane/glycopolymer biohybrids and the fabrication of glucose-shelled and oligosaccharide-threaded polypseudorotaxane-cored aggregates. This hopefully provides a platform for targeted drug delivery and for studying the biomolecular recognition between sugar and lectin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号