首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
A new series of segmented copolymers were synthesized from poly(ethylene terephthalate) (PET) oligomers and poly(ethylene glycol) (PEG) by a two‐step solution polymerization reaction. PET oligomers were obtained by glycolysis depolymerization. Structural features were defined by infrared and nuclear magnetic resonance (NMR) spectroscopy. The copolymer composition was calculated via 1H NMR spectroscopy. The content of soft PEG segments was higher than that of hard PET segments. A single glass‐transition temperature was detected for all the synthesized segmented copolymers. This observation was found to be independent of the initial PET‐to‐PEG molar ratio. The molar masses of the copolymers were determined by gel permeation chromatography (GPC). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4448–4457, 2004  相似文献   

2.
Cationic polymerizations of two series of divinyl ethers were carried out to clarify the effects of their central spacer chain structure on their crosslinking polymerization behavior. One series of the monomers involves divinyl ethers with an oligooxyethylene central spacer chain: diethylene glycol divinyl ether ( O‐3 ), triethylene glycol divinyl ether ( O‐4 ), tetraethylene glycol divinyl ether ( O‐5 ), pentaethylene glycol divinyl ether ( O‐6 ), and heptaethylene glycol divinyl ether ( O‐8 ) (see Scheme 1 ). The other series includes divinyl ethers with an oligomethylene central spacer chain: 1,4‐butanediol divinyl ether ( C‐4 ), 1,6‐hexanediol divinyl ether ( C‐6 ), and 1,8‐octanediol divinyl ether ( C‐8 ). Cationic polymerizations of these monomers were carried out with the hydrogen chloride/zinc chloride (HCl/ZnCl2) initiating system in methylene chloride (CH2Cl2) at ?30 °C ([Monomer]0 = 0.15 M; [HCl]0 = 5.0 mM; [ZnCl2]0 = 0.5 mM). The polymerizations of the oligomethylene‐based divinyl ethers C‐6 and C‐8 caused gel formation at high monomer conversions (~90%), whereas C‐4 formed soluble polymers even at almost 100% monomer conversion. The oligooxyethylene‐based divinyl ethers O‐3 , O‐4 , O‐5 , and O‐6 underwent gel‐free polymerizations up to 100% monomer conversion and O‐8 did so at least up to ~80% conversion. The content of unreacted pendant vinyl groups of the obtained soluble polymers was measured by 1H NMR spectroscopy. In the polymerizations of the oligomethylene‐based divinyl ethers ( C‐4 , C‐6 , and C‐8 ), the vinyl contents of the polymers decreased monotonously with increasing monomer conversion, and their number‐average molecular weights (Mn's) and polydispersity ratios (Mw/Mn's) increased considerably just before the gelation occurred. On the contrary, the vinyl contents of the polymers obtained from the oligooxyethylene‐based divinyl ethers ( O‐3 , O‐4 , O‐5 , O‐6 , and O‐8 ) decreased steeply even in the early stage of the polymerizations and almost all the pendant vinyl ether groups were consumed in the soluble polymers at the final stage of the polymerizations. The oligooxyethylene spacer units adjacent to the pendant unreacted vinyl ether groups may solvate intramolecularly with the carbocationic active center to accelerate frequent occurrence of intramolecular crosslinking reactions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3729–3738, 2004  相似文献   

3.
A new strategy is developed to prepare both α,ω‐dithiol and α,ω‐divinyl linear telechelic polythiolether oligomers by visible light induced thiol‐ene chemistry in the presence of a fac‐Ir(ppy)3 photoredox catalyst. Polythiolether oligomers of well‐defined end groups and controlled molecular weights have been successfully synthesized at varying monomer molar ratios of 1,4‐benzenedimethanethiol (BDMT) to diethylene glycol divinyl ether (DEGVE). 1H NMR and MALDI‐TOF MS analyses demonstrate that as‐prepared polythiolethers possess high end‐group fidelity, which is further supported by the successful polyaddition of polythiolethers bearing α,ω‐dithiol and α,ω‐divinyl groups. For example, with the α,ω‐dithiol‐ (Mn = 1900 g mol?1, PDI = 1.25) and α,ω‐divinyl‐terminated (Mn = 2000 g mol?1, PDI = 1.29) polythiolethers as macromonomers, the molecular weight of resulting polythiolether is up to 7700 g mol?1 with PDI as 1.67. The reactivity of the terminal thiol group is further confirmed by the addition reaction with N‐(1‐pyrenyl)maleimide. UV‐vis spectra and fluorescene measurements suggest that fac‐Ir(ppy)3 undergo a redox quenching process reacted with BDMT to generate thiyl free radicals. With these results, the mechanism of the thiol‐ene reaction catalyzed by photoredox catalyst is proposed. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 740–749  相似文献   

4.
A two‐step synthetic route to novel copolymer networks, consisting of polymethacrylate and polyacetal components, was developed by combining the polyaddition and anionic polymerization techniques. The functional polymethacrylates containing hydroxyl or vinyloxyl side groups were used as crosslinkers. They were anionically synthesized as follows: the copolymer of 2‐hydroxyethyl methacrylate (HEMA) and methyl methacrylate (MMA) was prepared by the anionic copolymerization of 2‐(trimethylsiloxy)ethyl methacrylate and MMA, followed by hydrolysis. The copolymer poly(HEMA‐co‐MMA) thus obtained possessed a hydroxyl group in each of its HEMA units. Another kind of vinyloxyl‐containing (co)polymer was prepared by the anionic homopolymerization of 2‐(vinyloxy)ethyl methacrylate (VEMA) or its copolymerization with MMA. The resulting (co)polymer possessed reactive vinyloxyl side groups. The copolymer networks were obtained by reacting each of the above‐mentioned (co)polymers with a polyacetal prepared via the polyaddition between a divinyl ether and a diol. Three divinyl ethers (ethylene glycol divinyl ether, 1,4‐butanediol divinyl ether, and 1,6‐hexanediol divinyl ether) and three diols (ethylene glycol, 1,4‐butanediol, and 1,6‐hexanediol) were employed as monomers in the polyaddition step, and their combinations generated nine kinds of polyacetals. When a polyaddition reaction was terminated with a divinyl ether monomer, a polyacetal with two vinyloxyl end groups was obtained, which could further react with the hydroxyl groups of poly(HEMA‐co‐MMA) to generate a copolymer network. On the other hand, when a diol was used as terminator in the polyaddition, the resulting polyacetal possessed two hydroxyl end groups, which could react with the vinyloxyl groups of poly(VEMA) or poly(VEMA‐co‐MMA), to generate a copolymer network. All the copolymer networks exhibited degradation in the presence of acids. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 117–126, 2001  相似文献   

5.
Segmented disulfonated poly(arylene ether sulfone)‐b‐polyimide copolymers based on hydrophilic and hydrophobic oligomers were synthesized and evaluated for use as proton exchange membranes (PEMs). Amine terminated sulfonated poly (arylene ether sulfone) hydrophilic oligomers and anhydride terminated naphthalene based polyimide hydrophobic oligomers were synthesized via step growth polymerization including high temperature one‐pot imidization. Synthesis of the multiblock copolymers was achieved by an imidization coupling reaction of hydrophilic and hydrophobic oligomers oligomers in a m‐cresol/NMP mixed solvent system, producing high molecular weight tough and ductile membranes. Proton conductivities and water uptake increased with increasing ion exchange capacities (IECs) of the copolymers as expected. The morphologies of the multiblock copolymers were investigated by tapping mode atomic force microscopy (TM‐AFM) and their measurements revealed that the multiblock copolymers had well‐defined nano‐phase separated morphologies which were clearly a function of block lengths. Hydrolytic stability test at 80 °C water for 1000 h showed that multiblock copolymer membranes retained intrinsic viscosities of about 80% of the original values and maintained flexibility which was much improved over polyimide random copolymers. The synthesis and fundamental properties of the multiblock copolymers are reported here and the systematic fuel cell properties will be provided in a separate article. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4879–4890, 2007  相似文献   

6.
We present herein a mild and rapid method to create diblock copolymer brushes on a silicon surface via photoinitiated “thiol‐ene” click reaction. The silicon surface was modified with 3‐mercaptopropyltrimethoxysilane (MPTMS) self‐assembled monolayer. Then, a mixture of divinyl‐terminated polydimethylsiloxane (PDMS) and photoinitiator was spin‐coated on the MPTMS surface and exposed to UV‐light. Thereafter, a mixture of thiol‐terminated polyethylene glycol (PEG) and photoinitiator were spin‐coated on the vinyl‐terminated PDMS‐treated surface, and the sequent photopolymerization was carried out under UV‐irradiation. The MPTMS, PDMS, and PEG layers were carefully identified by X‐ray photoelectron spectroscopy, atomic force microscopy, ellipsometry, and water contact angle measurements. The thickness of the polydimethylsiloxane‐block‐poly(ethylene glycol) (PDMS‐b‐PEG) diblock copolymer brush could be controlled by the irradiation time. The responsive behavior of diblock copolymer brushes treated in different solvents was also discussed. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
Tartrate‐functionalized polystyrene copolymers were prepared with divinyl benzene, tetraethyleneglycol diacrylate, and diallyl tartrate as the crosslinking agents. These insoluble materials possessed the unique advantages of heterogeneous reagents. These resins were used to support the asymmetric epoxidation of allylic alcohols along with titanium tetraisopropoxide and tert‐butyl hydroperoxide with reasonably good yields and a high enantiomeric excess. The swelling behavior and molecular architecture of the polymer backbone significantly influenced the effectiveness of the catalyst. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 161–169, 2000  相似文献   

8.
A series of epoxy‐functional telechelic oligomers containing oxetane end groups have been synthesized. The precursor monomer, extracted from outer Birch bark, was first polymerized through enzyme‐catalyzed esterification to form oligomers having epoxy and/or oxetane groups in the structures. The oligoesters were subsequently crosslinked through cationic polymerization either by epoxy or oxetane homopolymerization or copolymerization when both functionalities were present. A study of the polymerizations of the resins was performed “in situ” using real‐time Fourier transform infrared spectroscopy revealing a preferred copolymerization when compared with the homopolymerization. By tailoring the different structures, it was possible to control the final mechanical properties of the networks. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2258–2266  相似文献   

9.
An enzymatic one‐pot route in bulk was used to synthesize tetraallyl ether (tAE) functional oligomers based on divinyl adipate, 1,4‐butanediol and trimethylolpropane diallyl ether. By using lipase B from Candida antarctica as catalyst and varying the stoichiometric ratio of monomers, it was possible to reach targeted molecular weights (from 1300 to 3300 g mol?1) of allyl‐ether functional polyesters. The enzyme catalyzed reaction reached completion (>98% conversion based on all monomers) within 24 h at 60 °C, under reduced pressure (72 mbar) resulting in ~90% yield after filtration. The tAE‐functional oligoesters were photopolymerized, without any purification other than removal of the enzyme by filtration, with thiol functional monomers (dithiol, tetrathiol) in a 1:1 ratio thiol‐ene reaction. The photo‐initiator, 2,2‐dimethoxy‐2‐phenylacetophenone, was used to improve the rate of reaction under UV light. High conversions (96–99% within detection limits) were found for all thiol‐ene films as determined by FT‐Raman spectroscopy. The tAE‐functional oligoesters were characterized by NMR, MALDI, and SEC. The UV‐cured homopolymerized films and the thiol‐ene films properties were characterized utilizing DSC and DMTA. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

10.
A library of random poly(ethylene terephthalate) (PET), poly(trimethylene terephthalate) (PTT), and seven PET–PTT copolymers has been prepared in a high throughput manner by entropically‐driven ring‐opening polymerizations of the corresponding macrocyclic oligomers. The products have been investigated by differential scanning calorimetry and wide angle X‐ray diffraction. They show that the 50:50 copolymer displays a crystalline phase. The same phase can be formed by in situ transesterification when a 50:50 mixture of PET and PTT is melt blended. Poly(butylene terephthalate) (PBT)–PET and PTT–PBT 50:50 copolymers also show crystal phases. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
In this investigation the production of secondary value-added products, such as alkyd resins, derived from the glycolysis of poly(ethylene terephthalate) (PET) is examined as an effective way for its recycling. PET was taken from common soft-drink bottles and diethylene glycol (DEG) was used for the depolymerization at several initial molar ratios. The oligomers obtained were analyzed according to their average molecular weights. Furthermore, the glycolyzed PET products (oligomers) were reacted with maleic anhydride, phthalic anhydride and propylene glycol to form unsaturated polyester resins. These were subsequently mixed with styrene and cured using the benzoyl peroxide/amine initiator system to carry out the reaction in ambient temperature. The curing characteristics of the resins produced were investigated with respect to the initial molar ratio of DEG/PET as well as the initial initiator concentration. Finally, the mechanical properties (tensile strength and elongation at the break point) of the resins were compared with the conventional general purpose resin and were found to be comparable.  相似文献   

12.
A novel phenothiazine‐based polymer was synthesized through the Heck reaction of 3,7‐divinyl‐N‐octyl‐phenothiazine with 4,7‐dibromo‐2‐octylbenzotriazole according to the alternating donor–acceptor strategy. The polymer was characterized with 1H NMR, infrared spectroscopy, gel permeation chromatography, cyclic voltammetry, ultraviolet–visible spectroscopy, and fluorescence spectroscopy. With the polymer used as an active layer, three nondoped polymer light‐emitting diodes (PLEDs) with a double‐layer configuration were fabricated by the spin‐coating approach with different thermal annealing processes. The emission maximum in electroluminescent spectra was stabilized at 616 nm. The maximum luminance reached 2432 cd/m2. The coordinate value of Commission International de l'Eclairage 1931 in the double‐layer PLEDs after the thermal treatment was nearly stabilized at (x, y) =(0.62, 0.38). Additionally, the luminous efficiency of device II reached a balanceable state with an increase in the current. Therefore, the polymer had an orange‐red emission with stable chromaticity coordinates under different driving voltages. Finally, a nondoped device with a stable luminous efficiency and chromaticity was obtained. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4867–4878, 2007  相似文献   

13.
Tetrafunctional lactic acid oligomers with low molecular weight ethylene glycol cores were synthesized and characterized to assess their applicability to orthopaedics. Utilizing a visible light photoinitiating system, these oligomers polymerize within minutes to form highly crosslinked networks and, thus, have potential for in situ formation. Varying the oligomer structure readily alters the physical properties of the resultant polymer networks. For instance, mechanical properties were highly dependent on the number of lactic acid and ethylene glycol units in the oligomer backbone. Additionally, polymer mass loss ranged from ∼30 to 60% within 8 weeks of degradation time depending on the oligomer chemistry. Mechanical properties decreased with degradation of these polymers, indicating a bulk degradation mechanism. Finally, scaffolds with a controlled architecture were fabricated from these oligomers that show potential for tissue‐engineering applications. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 683–692, 2001  相似文献   

14.
Starting with 3,3′,4,4′‐biphenyltetracarboxylic dianhydride and methyl aminobenzoate, we synthesized a novel rodlike imide‐containing monomer, N,N′‐bis[p‐(methoxy carbonyl) phenyl]‐biphenyl‐3,3′,4,4′‐tetracarboxydiimide (BMBI). The polycondensation of BMBI with dimethyl terephthalate and ethylene glycol yielded a series of copoly(ester imide)s based on the BMBI‐modified poly(ethylene terephthalate) (PET) backbone. Compared with PET, these BMBI‐modified polyesters had higher glass‐transition temperatures and higher stiffness and strength. In particular, the poly(ethylene terephthalate imide) PETI‐5, which contained 5 mol % of the imide moieties, had a glass‐transition temperature of 89.9 °C (11 °C higher than the glass‐transition temperature of PET), a tensile modulus of 869.4 MPa (20.2 % higher than that of PET), and a tensile strength of 80.8 MPa (38.8 % higher than that of PET). Therefore, a significant reinforcing effect was observed in these imide‐modified polyesters, and a new approach to higher property polyesters was suggested. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 852–863, 2002; DOI 10.1002/pola.10169  相似文献   

15.
New hyperbranched (HOFV) and linear oligomers (LOFV) were prepared from 2‐bromo‐5,7‐divinyl‐9,9‐dihexylfluorene (AB2) and 2‐bromo‐7‐vinyl‐9,9‐dihexylfluorene, respectively, by the Heck reaction to study the effect of hyperbranched structure. The oligomers were readily soluble in common organic solvents. The weight‐average molecular weights (Mw) of HOFV and LOFV, determined by gel permeation chromatography using polystyrene as standard, were 2350 and 3950, respectively. Optical properties, both in solution and film state, were investigated using absorption and photoluminescence (PL) spectra. In film state, the absorption and PL spectra peaked at 416 ~ 425 nm and 473 ~ 503 nm, respectively. The HOFV showed energy funnel effect and enhanced fluorescence efficiency owing to the hyperbranched structure. The HOMO and LUMO levels of HOFV (LOFV), estimated from their cyclic voltammograms, were ?5.25 (?5.34) eV and ?2.66 (?2.75) eV, respectively. Thermal curing of HOFV to form cross‐linked HPFV (hyperbranched poly(fluorenevinylene)) was studied by IR, DSC, UV–visible spectra, NMR, AFM and SEM. The terminal vinyl groups in HOFV film almost disappeared to provide smooth, homogeneous and solvent‐resistant films of HPFV. Two‐layer PLED devices (ITO/PEDOT/HPFV/Ca/Al) exhibited maximal luminance and luminous efficiency of 1480 cd/m2 and 0.18 cd/A, respectively, which were superior to its linear counterpart LPFV (352 cd/m2, 0.06 cd/A). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 70–84, 2008  相似文献   

16.
Biodegradable, amphiphilic, diblock poly(ε‐caprolactone)‐block‐poly(ethylene glycol) (PCL‐b‐PEG), triblock poly(ε‐caprolactone)‐block‐poly(ethylene glycol)‐block‐poly(ε‐caprolactone) (PCL‐b‐PEG‐b‐PCL), and star shaped copolymers were synthesized by ring opening polymerization of ε‐caprolactone in the presence of poly(ethylene glycol) methyl ether or poly(ethylene glycol) or star poly(ethylene glycol) and potassium hexamethyldisilazide as a catalyst. Polymerizations were carried out in toluene at room temperature to yield monomodal polymers of controlled molecular weight. The chemical structure of the copolymers was investigated by 1H and 13C NMR. The formation of block copolymers was confirmed by 13C NMR and DSC investigations. The effects of copolymer composition and molecular structure on the physical properties were investigated by GPC and DSC. For the same PCL chain length, the materials obtained in the case of linear copolymers are viscous whereas in the case of star copolymer solid materials are obtained with low Tg and Tm temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3975–3985, 2007  相似文献   

17.
The hydrolytic degradation of technical poly(ethylene terephthalate) (PET) was investigated by means of different methods such as size-exclusion chromatography (SEC), viscometry, light-scattering, thin-layer chromatography, end-group titration, and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The long-term degradation was simulated by exposing PET filament yarns to aqueous neutral conditions at 90°C for up to 18 weeks. By means of MALDI-MS and thin-layer chromatography, the formation of different oligomers was obtained during polymer degradation. As expected, an ester scission process was found generating acid terminated oligomers (H-[GT]m-OH) and T-[GT]m-OH and ethylene glycol terminated oligomers (H-[GT]m-G), where G is an ethylene glycol unit and T is a terephthalic acid unit. Additionally, the scission of the ester bonds during the chemical treatment led to a strong decrease in the number of cyclic oligomers ([GT]m). The occurrence of di-acid terminated species demonstrated a high degree of degradation. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2183–2192, 1997  相似文献   

18.
Lipase-catalyzed polymerization of dicarboxylic acid–divinyl esters with glycols has been performed. The vinyl esters used were divinyl adipate and divinyl sebacate. Lipases derived from Candida antarctica, Mucor miehei, Pseudomonas cepacia, and P. fluorescens showed high catalytic activity toward the present polymerization. Effects of solvent, reaction temperature, and enzyme amount were systematically investigated. A combination of divinyl adipate, 1,4-butanediol, and P. cepacia lipase afforded the highest molecular weight (2.1 × 104). The yield of the polymer from divinyl sebacate was higher than that from divinyl adipate, whereas the opposite tendency was observed in the polymer molecular weight. Methylene chain length of α,ω-alkylene glycol also affected the polymerization behavior. The enzymatic polymerization of divinyl sebacate with cis-2-butene-1,4-diol and 2-butyne-1,4-diol resulted in the polymer containing unsaturated group in the polymer backbone. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2737–2745, 1999  相似文献   

19.
The methanolysis of poly(ethylene terephthalate) (PET) copolymers containing 5‐nitroisophthalic units was investigated. Random copolyesters containing 10 and 30 mol % of such units were prepared via a two‐step melt copolycondensation of bis(2‐hydroxyethyl) terephthalate (BHET) and bis(2‐hydroxyethyl) 5‐nitroisophthalate (BHENI) in the presence of tetrabutyl titanate as a catalyst. First, the susceptibility of these two comonomers toward methanolysis was evaluated, and their reaction rates were estimated with high‐performance liquid chromatography. BHENI appeared to be much more reactive than both BHET and bis(2‐hydroxyethyl) isophthalate. The methanolysis of PET and the copolyesters was carried out at 100 °C, and the degradation process was followed by changes in the weight and viscosity, gel permeation chromatography, differential scanning calorimetry, and 1H and 13C NMR spectroscopy. The copolyesters degraded faster than PET, and the rate of degradation increased with the content of nitrated units. The products resulting from methanolysis were concluded to be dimethyl terephthalate, dimethyl 5‐nitroisophthalate, ethylene glycol, and small, soluble oligomers. For both PET and the copolyesters, an increase in crystallinity was observed during the degradation process, indicating that methanolysis preferentially occurred in the amorphous phase. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 76–87, 2002  相似文献   

20.
We report a new kind of coating using UV waterborne technique with a biobased poly(amino acid) resin. Firstly we performed the thermal polycondensation of l ‐lysine during 15 h at 150 °C to synthesize water‐soluble oligomers of poly‐l ‐lysine (PLL) with 5–6 monomer units. These oligomers were then transformed in mild conditions to give photocurable water‐soluble resins. We grafted on the poly‐l ‐lysine backbone, allyl and maleamic acid functional groups, with a grafting rate close to 65% thanks to allyl glycidyl ether and maleic anhydride respectively. The influence of the reaction time and the reagents ratio on the grafting rate was investigated. Hence, the donor/acceptor photopolymerization of the mixture of allyl ether‐poly‐l ‐lysine (PLL‐g‐AE) with maleamic acid‐poly‐l ‐lysine (PLL‐g‐MA) in aqueous solution gave yellow transparent films. The degree of conversion and other kinetic parameters have been studied and detailed. This work contributes to the development of materials based on renewable resources and cleaner processes. It opens a new pathway to both fundamental and applied‐driven research. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 955–963  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号