首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
A series of novel poly(ester‐carbonate)s bearing pendant allyl ester groups P(LA‐co‐MAC)s were prepared by ring‐opening copolymerization of L ‐lactide (LA) and 5‐methyl‐5‐allyloxycarbonyl‐1,3‐dioxan‐2‐one (MAC) with diethyl zinc (ZnEt2) as initiator. NMR analysis investigated the microstructure of the copolymer. DSC results indicated that the copolymers displayed a single glass‐transition temperature (Tg), which was indicative of a random copolymer, and the Tg decreased with increasing carbonate content in the copolymer. Then NHS‐activated folic acid (FA) first reacted with 2‐aminoethanethiol to yield FA‐SH; grafting FA‐SH to P(LA‐co‐MAC) in the presence of TEA produced P(LA‐co‐MAC)/FA. The structure of P(LA‐co‐MAC)/FA and its precursor were confirmed by 1H NMR and XPS analysis. Cell experiments showed that FA‐grafted P(LA‐co‐MAC) had improved adhesion and proliferation behavior of vero cells on the polymer films. Therefore, the novel FA‐grafted block copolymer is expected to find application in drug delivery or tissue engineering. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1852–1861, 2008  相似文献   

2.
A series of di‐ and triblock copolymers [poly(L ‐lactide‐b‐ε‐caprolactone), poly(D,L ‐lactide‐b‐ε‐caprolactone), poly(ε‐caprolactone‐b‐L ‐lactide), and poly(ε‐caprolactone‐b‐L ‐lactide‐b‐ε‐caprolactone)] have been synthesized successfully by sequential ring‐opening polymerization of ε‐caprolactone (ε‐CL) and lactide (LA) either by initiating PCL block growth with living PLA chain end or vice versa using titanium complexes supported by aminodiol ligands as initiators. Poly(trimethylene carbonate‐b‐ε‐caprolactone) was also prepared. A series of random copolymers with different comonomer composition were also synthesized in solution and bulk of ε‐CL and D,L ‐lactide. The chemical composition and microstructure of the copolymers suggest a random distribution with short average sequence length of both the LA and ε‐CL. Transesterification reactions played a key role in the redistribution of monomer sequence and the chain microstructures. Differential scanning calorimetry analysis of the copolymer also evidenced the random structure of the copolymer with a unique Tg. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
A poly(D,L ‐lactide)–bromine macroinitiator was synthesized for use in the preparation of a novel biocompatible polymer. This amphiphilic diblock copolymer consisted of biodegradable poly(D,L ‐lactide) and 2‐methacryloyloxyethyl phosphorylcholine and was formed by atom transfer radical polymerization. Polymeric nanoparticles were prepared by a dialysis process in a select solvent. The shape and structure of the polymeric nanoparticles were determined by 1H NMR, atomic force microscopy, and ζ‐potential measurements. The results of cytotoxicity tests showed the good cytocompatibility of the lipid‐like diblock copolymer poly(2‐methacryloyloxyethyl phosphorylcholine)‐block‐poly(D,L ‐lactide). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 688–698, 2007  相似文献   

4.
An amphiphilic block copolymer, poly(ethylene glycol)‐block‐poly(L ‐lactide‐co‐2‐methyl‐2‐benzoxycarbonyl‐propylene carbonate) [PEG‐b‐P(LA‐co‐MBC)], was synthesized in bulk by the ring‐opening polymerization of L ‐lactide with 2‐methyl‐2‐benzoxycarbonyl‐propylene carbonate (MBC) in the presence of poly(ethylene glycol) as a macroinitiator with diethyl zinc as a catalyst. The subsequent catalytic hydrogenation of PEG‐b‐P(LA‐co‐MBC) with palladium hydroxide on activated charcoal (20%) as a catalyst was carried out to obtain the corresponding linear copolymer poly(ethyleneglycol)‐block‐poly(L ‐lactide‐co‐2‐methyl‐2‐carboxyl‐propylenecarbonate) [PEG‐b‐P(LA‐co‐MCC)] with pendant carboxyl groups. DSC analysis indicated that the glass‐transition temperature (Tg) of PEG‐b‐P(LA‐co‐MBC) decreased with increasing MBC content in the copolymer, and Tg of PEG‐b‐P(LA‐co‐MCC) was higher than that of the corresponding PEG‐b‐P(LA‐co‐MBC). The in vitro degradation rate of PEG‐b‐P(LA‐co‐MCC) in the presence of proteinase K was faster than that of PEG‐b‐P(LA‐co‐MBC), and the cytotoxicity of PEG‐b‐P(LA‐co‐MCC) to chondrocytes from human fetal arthrosis was lower than that of poly(L ‐lactide). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4771–4780, 2005  相似文献   

5.
A series of poly(L ‐lysine)s grafted with aliphatic polyesters, poly(L ‐lysine)‐graft‐poly(L ‐lactide) (PLy‐g‐PLLA) and poly(L ‐lysine)‐graft‐poly(?‐caprolactone) (PLy‐ g‐PCL), were synthesized through the Michael addition of poly(L ‐lysine) and maleimido‐terminated poly(L ‐lactide) or poly(?‐caprolactone). The graft density of the polyesters could be adjusted by the variation of the feed ratio of poly(L ‐lysine) to the maleimido‐terminated polyesters. IR spectra of PLy‐g‐PCL showed that the graft copolymers adopted an α‐helix conformation in the solid state. Differential scanning calorimetry measurements of the two kinds of graft copolymers indicated that the glass transition temperature of PLy‐g‐PLLA and the melting temperature of PLy‐g‐PCL increased with the increasing graft density of the polyesters on the backbone of poly(L ‐lysine). Circular dichroism analysis of PLy‐g‐PCL in water demonstrated that the graft copolymer existed in a random‐coil conformation at pH 6 and as an α‐helix at pH 9. In addition, PLy‐g‐PCL was found to form micelles to vesicles in an aqueous medium with the increasing graft density of poly(?‐caprolactone). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1889–1898, 2007  相似文献   

6.
This article deals with (1) synthesis of novel cyclic carbonate monomer (2‐oxo [1,3]dioxan‐5‐yl)carbamic acid benzyl ester (CAB) containing protected amino groups; (2) ring‐opening copolymerization of the cyclic monomer with L ‐lactide (LA) to provide novel degradable poly(ester‐carbonate)s with functional groups; (3) removal of the protective benzyloxycarbonyl (Cbz) groups by catalytic hydrogenation to afford the corresponding poly(ester‐co‐carbonate)s with free amino groups; (4) grafting of oligopeptide Gly‐Arg‐Gly‐Asp‐Ser‐Tyr (GRGDSY, abbreviated as RGD) onto the copolymer pendant amino groups in the presence of 1,1′‐carbonyldiimidazole (CDI). The structures of P(LA‐co‐CA/RGD) and its precursor were confirmed by 1H NMR analysis. Cell experiments showed that P(LA‐co‐CA/RGD) had improved adhesion and proliferation behavior. Therefore, the novel RGD‐grafted block copolymer is promising for cell or tissue engineering applications. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7022–7032, 2008  相似文献   

7.
Two types of three‐arm and four‐arm, star‐shaped poly(D,L ‐lactic acid‐alt‐glycolic acid)‐b‐poly(L ‐lactic acid) (D,L ‐PLGA50‐b‐PLLA) were successfully synthesized via the sequential ring‐opening polymerization of D,L ‐3‐methylglycolide (MG) and L ‐lactide (L ‐LA) with a multifunctional initiator, such as trimethylolpropane and pentaerythritol, and stannous octoate (SnOct2) as a catalyst. Star‐shaped, hydroxy‐terminated poly(D,L ‐lactic acid‐alt‐glycolic acid) (D,L ‐PLGA50) obtained from the polymerization of MG was used as a macroinitiator to initiate the block polymerization of L ‐LA with the SnOct2 catalyst in bulk at 130 °C. For the polymerization of L ‐LA with the three‐arm, star‐shaped D,L ‐PLGA50 macroinitiator (number‐average molecular weight = 6800) and the SnOct2 catalyst, the molecular weight of the resulting D,L ‐PLGA50‐b‐PLLA polymer linearly increased from 12,600 to 27,400 with the increasing molar ratio (1:1 to 3:1) of L ‐LA to MG, and the molecular weight distribution was rather narrow (weight‐average molecular weight/number‐average molecular weight = 1.09–1.15). The 1H NMR spectrum of the D,L ‐PLGA50‐b‐PLLA block copolymer showed that the molecular weight and unit composition of the block copolymer were controlled by the molar ratio of L ‐LA to the macroinitiator. The 13C NMR spectrum of the block copolymer clearly showed its diblock structures, that is, D,L ‐PLGA50 as the first block and poly(L ‐lactic acid) as the second block. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 409–415, 2002  相似文献   

8.
The synthesis of a new cyclic carbonate monomer containing an allyl group was reported and its biodegradable amphiphilic block copolymer, poly(ethylene glycol)‐block‐poly(L ‐lactide‐co‐5‐methyl‐5‐allyloxycarbonyl‐propylene carbonate) [PEG‐b‐P(LA‐co‐MAC)] was synthesized by ring‐opening polymerization (ROP) of L ‐lactide (LA) and 5‐methyl‐5‐allyloxycarbonyl‐1,3‐dioxan‐2‐one (MAC) in the presence of poly (ethylene glycol) as a macroinitiator, with diethyl zinc as a catalyst. 13C NMR and 1H NMR were used for microstructure identification of the copolymers. The copolymer could form micelles in aqueous solution. The core of the micelles is built of the hydrophobic P(LA‐co‐MAC) chains, whereas the shell is set up by the hydrophilic PEG blocks. The micelles exhibited a homogeneous spherical morphology and unimodal size distribution. By using the cyclic carbonate monomer containing allyl side‐groups, crosslinking of the PEG‐b‐P(LA‐co‐MAC) inner core was possible. The adhesion and spreading of ECV‐304 cells on the copolymer were better than that on PLA films. Therefore, this biodegradable amphiphilic block copolymer is expected to be used as a biomaterial for drug delivery and tissue engineering. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5518–5528, 2007  相似文献   

9.
Divalent samarocene complex [(C5H9C5H4)2Sm(tetrahydrofuran)2] was prepared and characterized and used to catalyze the ring‐opening polymerization of L ‐lactide (L‐LA) and copolymerization of L‐LA with caprolactone (CL). Several factors affecting monomer conversion and molecular weight of polymer, such as polymerization time, temperature, monomer/catalyst ratio, and solvent, were examined. The results indicated that polymerization was rapid, with monomer conversions reaching 100% within 1 h, and the conformation of L‐LA was retained. The structure of the block copolymer of CL/L‐LA was characterized by NMR and differential scanning calorimetry. The morphological changes during crystallization of poly(caprolactone) (PCL)‐b‐P(L‐LA) copolymer were monitored with real‐time hot‐stage atomic force microscopy (AFM). The effect of temperature on the morphological change and crystallization behavior of PCL‐b‐P(L‐LA) copolymer was demonstrated through AFM observation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2667–2675, 2003  相似文献   

10.
A functionalized cyclic carbonate monomer containing a cinnamate moiety, 5‐methyl‐5‐cinnamoyloxymethyl‐1,3‐dioxan‐2‐one (MC), was prepared for the first time with 1,1,1‐tri(hydroxymethyl) ethane as a starting material. Subsequent polymerization of the new cyclic carbonate and its copolymerization with L ‐lactide (LA) were successfully performed with diethyl zinc (ZnEt2) as initiator/catalyst. NMR was used for microstructure identification of the obtained monomer and copolymers. Differential scanning calorimetry (DSC) was used to characterize the functionalized poly(ester‐carbonate). The results indicated that the copolymers displayed a single glass transition temperature (Tg) and the Tg decreased with increasing carbonate content and followed the Fox equation, indicative of a random microstructure of the copolymer. The photo‐crosslinking of the cinnamate‐carrying copolymer was also demonstrated. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 161–169, 2009  相似文献   

11.
Homopoly(L ‐lactide) and homopoly(D,L ‐lactide) were almost inert for biodegradation with tricine buffer or normal enzymes such as bromelain, pronase, and cholesterol esterase but biodegradable with proteinase K. Significantly enhanced biodegradation was observed when an optically active (R)‐ or (S)‐3‐methyl‐4‐oxa‐6‐hexanolide (MOHEL) unit was introduced into poly(L ‐lactide) [poly(L ‐LA)] or poly(D,L ‐lactide) [poly(D,L ‐LA)] sequences. Poly[L ‐LA‐ran‐(R)‐MOHEL] in molar ratios of 86/14 to 43/57 showed good biodegradability that was independent of crystallinity. The biodegradation of polymers with proteinase K increased in the following order: poly[D,L ‐LA‐ran‐(R)‐MOHEL] > poly[L ‐LA‐ran‐(R)‐MOHEL] > poly[D,L ‐LA‐ran‐(S)‐MOHEL] > poly[L ‐LA‐ran‐(S)‐MOHEL] > poly(R)‐MOHEL > poly(D,L ‐LA). The number‐average molecular weight, molecular weight distribution, glass‐transition temperature, and melting temperature did not change before and after the biodegradation of poly[L ‐LA‐ran‐(R)‐MOHEL], indicating that the degradation occurred from the polymer surface. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1374–1381, 2001  相似文献   

12.
A novel amphiphilic biodegradable triblock copolymer (PGL‐PLA‐PGL) with polylactide (PLA) as hydrophobic middle block and poly(glutamic acid) (PGL) as hydrophilic lateral blocks was successfully synthesized by ring‐opening polymerization (ROP) of L ‐lactide (LA) and N‐carboxy anhydride (NCA) consecutively and by subsequent catalytic hydrogenation. The results of cell experiment of PGL‐PLA‐PGL suggested that PGL could improve biocompatibility of polyester obviously. The copolymer could form micelles of spindly shape easily in aqueous solution. The pendant carboxyl groups of the triblock copolymer were further activated with N‐hydroxysuccinimide and combined with a cell‐adhesive peptide GRGDSY. Incorporation of the oligopeptide further enhanced the hydrophilicity and led to formation of spherical micelles. PGL‐PLA‐PGL showed better cell adhesion and spreading ability than pure PLA and the GRGDSY‐containing copolymer exhibited even further improvement in cell adhesion and spreading ability, indicating that the copolymer could find a promising application in drug delivery or tissue engineering. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3218–3230, 2007  相似文献   

13.
Living ω‐aluminum alkoxide poly‐ϵ‐caprolactone and poly‐D,L ‐lactide chains were synthesized by the ring‐opening polymerization of ϵ‐caprolactone (ϵ‐CL) and D,L ‐lactide (D,L ‐LA), respectively, and were used as macroinitiators for glycolide (GA) polymerization in tetrahydrofuran at 40 °C. The P(CL‐b‐GA) and P(LA‐b‐GA) diblock copolymers that formed were fractionated by the use of a selective solvent for each block and were characterized by 1H NMR spectroscopy and differential scanning calorimetry analysis. The livingness of the operative coordination–insertion mechanism is responsible for the control of the copolyester composition, the length of the blocks, and, ultimately, the thermal behavior. Because of the inherent insolubility of the polyglycolide blocks, microphase separation occurs during the course of the sequential polymerization, resulting in a stable, colloidal, nonaqueous copolymer dispersion, as confirmed by photon correlation spectroscopy. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 294–306, 2001  相似文献   

14.
The cationic homopolymerization and copolymerization of L,L ‐lactide and ε‐caprolactone in the presence of alcohol have been studied. The rate of homopolymerization of ε‐caprolactone is slightly higher than that of L,L ‐lactide. In the copolymerization, the reverse order of reactivities has been observed, and L,L ‐lactide is preferentially incorporated into the copolymer. Both the homopolymerization and copolymerization proceed by an activated monomer mechanism, and the molecular weights and dispersities are controlled {number‐average degree of polymerization = ([M]0 ? [M]t)/[I]0, where [M]0 is the initial monomer concentration, [M]t is the monomer concentration at time t, and [I]0 is the initial initiator concentration; weight‐average molecular weight/number‐average molecular weight ~1.1–1.3}. An analysis of 13C NMR spectra of the copolymers indicates that transesterification is slow in comparison with propagation, and the microstructure of the copolymers is governed by the relative reactivity of the comonomers. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 7071–7081, 2006  相似文献   

15.
Cationic copolymerization of L,L ‐lactide (LA) and ε‐caprolactone (CL) initiated by low molecular weight diols in the presence of acid catalyst gives corresponding copolyesters terminated at both ends with hydroxyl groups in practically quantitative yield. Copolymerization proceeds by Activated Monomer mechanism. LA is consumed preferentially and at the later stages of copolymerization the reaction mixture is enriched with CL. In spite of that, random distribution of both units is observed and end‐groups are mainly ? LA‐OH groups and not ? CL‐OH groups. This is explained by the fact that to reach high conversion of both comonomers the relatively long reaction times are required and at those conditions transesterification reaction becomes significant. Thus the microstructure of copolymers and the nature of the end‐groups is governed by transesterification rather then by the kinetics of comonomers incorporation. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3090–3097, 2007  相似文献   

16.
Ring‐opening copolymerization (ROCP) of L ‐lactide (L ‐LA) and (3S)‐benzyloxymethyl‐(6S)‐methyl‐morpholine‐2,5‐dione [(3S, 6S)‐BMMD] initiated by creatinine acetate, a biogenic organic compound, was performed in the bulk at 130 °C. The copolymerization was well controlled as evidenced by that both the measured values of number‐average molecular weight (Mn,NMR(OH) and Mn,NMR(COOH)) and serine molar fraction (FBz.ser) of synthesized copolymers were close to the corresponding theoretical values; and that the higher isotacticity of synthesized copolymers (85–86%) and lower racemization degree of the ROCP. After removing O‐benzyls of the copolymers with Et3SiH/Et3N/CH2Cl2 under catalysis of PdCl2, functional biodegradable copolymers of L ‐lactic acid (L ‐Lac) and L ‐Ser with designed molar fraction of serine (Fser 1.35%, 3.57%, 5.41%), narrow molecular weight distribution (polydispersity index 1.10–1.36), and improved hydrophilicity (θstat 82.3–89.6°) were finally obtained. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
Polylactide (PLA)‐grafted dextran was synthesized with a trimethylsilyl protection method to produce novel biodegradable, biomedical materials. PLA‐grafted dextrans with various lengths and numbers of graft chains were synthesized. The properties of solution‐cast films prepared from PLA‐grafted dextrans were investigated with thermal and dynamic mechanical analyses. The graft‐copolymer films exhibited lower glass‐transition temperatures, melting temperatures (Tm's), and crystallinities as well as higher viscosity properties as compared with poly‐L ‐lactide film. The Tm and crystallinity and mechanical properties at 37 °C could be adjusted by controlling the molecular structure such as the lengths and numbers of graft chains. Furthermore, the biodegradability of PLA‐grafted dextran films was investigated through the weight change of film and the molecular weight change of polymer during the in vitro degradation test. PLA‐grafted dextrans exhibited different degradation behavior from poly‐L ‐lactide with the introduction of a polysaccharide segment and branched structure as well as the change of end‐functional group. The degradation rate of PLA‐grafted dextran and the cast film prepared from PLA‐grafted dextran could be adjusted by controlling the sugar content or the length of graft chains. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2462–2468, 2003  相似文献   

18.
The bowl‐shaped aluminum alkoxide complexes bearing N2O2 bis(phenolate)‐amine ligands having different side arms as pyridine ( 1 ), dimethyl amine ( 2 ), and diethyl amine ( 3 ) were shown to be highly efficient and well behaved in the homopolymerization and copolymerization of l ‐lactide (LA) and ε‐caprolactone (ε‐CL) at 100 °C. The rates of copolymerization are similar for Complexes 1 – 3 where nearly full conversions were achieved in 60 h for [LA]:[CL]:[Al] ratio of 50:50:1. The minor adjustment of the side arms of the Catalysts 1 – 3 gave profound differences in the LA/ε‐CL copolymer sequences where tapered, gradient, and highly random structures were obtained in one system, respectively. The chelation of LA to Al metal after ring‐opening process and suitable steric hindrance of the side arms were believed to participate and saturate the aluminum metal centers giving different copolymer structures. The random LA/ε‐CL copolymer structure was confirmed by nuclear magnetic resonance and differential scanning calorimetry analysis. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1635–1644  相似文献   

19.
Two enantiomeric amphiphilic graft copolymers consisting of water soluble poly(2‐hydroxyethyl methacrylate) (HEMA) and biodegradable oligo(L ‐lactide) (OLLA) or oligo(D ‐lactide) (ODLA) were synthesized by free radical copolymerization. HEMA‐OL(D)LA macromonomers were synthesized by ring opening polymerization of L ‐ or D ‐lactide. Both HEMA‐OLA macromonomers and graft copolymers were characterized by NMR spectroscopy and gel permeation chromatography. Graft copolymers and their stereocomplexes were analyzed by wide angle X‐ray diffraction and differential scanning calorimetry (DSC). Due to the formation of stereocomplex crosslinks between poly(HEMA) main chains, amphiphilic, biodegradable hydrogels prepared by blending of two enantiomeric poly(HEMA‐g‐OLLA) and poly(HEMA‐g‐ODLA) degraded more slowly in phosphate buffered saline than individual optically pure poly‐(HEMA‐g‐OL(D)LA).  相似文献   

20.
Ethylene glycol (EG) initiated, hydroxyl‐telechelic poly(L ‐lactide) (PLLA) was employed as a macroinitiator in the presence of a stannous octoate catalyst in the ring‐opening polymerization of 5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one (MBC) with the goal of creating A–B–A‐type block copolymers having polycarbonate outer blocks and a polyester center block. Because of transesterification reactions involving the PLLA block, multiblock copolymers of the A–(B–A)n–B–A type were actually obtained, where A is poly(5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one), B is PLLA, and n is greater than 0. 1H and 13C NMR spectroscopy of the product copolymers yielded evidence of the multiblock structure and provided the lactide sequence length. For a PLLA macroinitiator with a number‐average molecular weight of 2500 g/mol, the product block copolymer had an n value of 0.8 and an average lactide sequence length (consecutive C6H8O4 units uninterrupted by either an EG or MBC unit) of 6.1. For a PLLA macroinitiator with a number‐average molecular weight of 14,400 g/mol, n was 18, and the average lactide sequence length was 5.0. Additional evidence of the block copolymer architecture was revealed through the retention of PLLA crystallinity as measured by differential scanning calorimetry and wide‐angle X‐ray diffraction. Multiblock copolymers with PLLA crystallinity could be achieved only with isolated PLLA macroinitiators; sequential addition of MBC to high‐conversion L ‐lactide polymerizations resulted in excessive randomization, presumably because of residual L ‐lactide monomer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6817–6835, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号