首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of photoactive liquid crystalline polyester epoxies incorporating bisbenzylidene segments as photoactive mesogenic cores were synthesized by polyaddition of diepoxy monomers and terephthalic acid/trimesic acid. To investigate the influence of structural parameters such as, molecular architecture, structural rigidity of mesogenic unit and substituents on thermal, mesogenic, and photoactive properties, the bisbenzylidene segment was incorporated into one acyclic and two cycloalkanone units with two and four substituents, respectively in both linear and hyperbranched architectures. Degree of branching of hyperbranched polymers was found to be in the range of 0.49–0.62. All polymers exhibited nematic mesophase (nematic droplets). Photo induced (2π + 2π) cycloaddition reaction, upon exposure to light at 365 nm, was examined. Inter molecular photocycloaddition was confirmed by photoviscosity measurement of UV irradiated polymer solutions. Faster photo induced reactivity of polymers in hyperbranched architecture was observed when compared to linear structure. Acyclic units facilitated photocycloaddition, and five‐membered ring showed higher photoactivity compared to six‐membered ring. The steric hindrance caused by substituents decreased the photoactivity of polymers. Refractive index change was found to be in the range of 0.015–0.024. Substantial variation of refractive index indicates that these polymers could be used for optical recording. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7637–7655, 2008  相似文献   

2.
A series of photoactive liquid crystalline linear and hyperbranched polyester epoxies were synthesized by polyaddition of photoactive bis benzylidene alkanone diol monomers and terephthalic acid and trimesic acid respectively with good yield. The effect of molecular architecture (linear and hyperbranched), size of mesogenic unit (cyclic and acyclic units) on the physicochemical, thermal, mesogenic, and photoactive properties of hyperbranched polymers were studied and compared. Degree of branching of hyperbranched polymers was found to be in the range of 0.46–0.49. Monomers containing cyclic moieties only exhibited nematic mesophase, while all polymers exhibited typical nematic mesophase. Intermolecular photo cycloaddition reaction was studied by ultraviolet–visible spectra (UV–vis) and NMR spectroscopy and photo viscosity measurement of UV irradiated polymer solutions. Faster photo induced behavior of hyperbranched polymers containing acyclic alkanone moiety, as compared to polymers containing cycloalkanone moieties, was observed. The change in the refractive index was found to be in the range of 0.02–0.024. Substantial variation of refractive index indicates that this polymer could be used for optical recording. All the polymers were also found to be fluorescent in nature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 552–563, 2008  相似文献   

3.
Photoactive hyperbranched benzylidene liquid‐crystalline polyester (PAHBP) and photoactive linear benzylidene liquid‐crystalline polyester (PALBP) were synthesized by solution polycondensation with pyridine as an acid acceptor. PAHBP and PALBP were thoroughly characterized with Fourier transform infrared, 1H and 13C NMR, ultraviolet–visible spectrophotometry, fluorescent spectrophotometry, gel permeation chromatography, thermogravimetric analysis, differential scanning calorimetry, and polarized optical microscopy. Both polymers exhibited nematic mesophase. The glass‐transition temperature and liquid‐crystalline isotropic temperature of PAHBP were higher than those of PALBP. During photolysis under ultraviolet light, both polymers underwent an intermolecular photocycloaddition reaction, and the photoactivity of PAHBP was faster than that of PALBP; this was further confirmed by photoviscosity studies. PALBP and PAHBP were fluorescent in nature. An increase in the fluorescence intensity with the time of ultraviolet‐light irradiation was observed for both PAHBP and PALBP. The rate of increase in the fluorescence intensity of the linear analogue (PALBP) was higher than that of the hyperbranched polymer (PAHBP). This behavior could be attributed to the attainment of better planarity in the case of the linear one but not in the case of PAHBP because of the rapid crosslinking of PAHBP leading to an irregular architecture. This behavior was further confirmed by the calculation of the steric energy from corresponding model compounds. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3986–3994, 2006  相似文献   

4.
A novel photoactive, liquid‐crystalline, hyperbranched benzylidene polyester (PAHBP) was synthesized from a dilute solution of an A2 photoactive monomer [bis(4‐hydroxybenzylidene)‐4‐phenyl cyclohexanone] and a B3 monomer (1,3,5‐benzene tricarboxylic acid chloride) by the solution polycondensation method in the presence of pyridine as a condensing agent. PAHBP was thoroughly characterized by Fourier transform infrared, 1H and 13C NMR, ultraviolet–visible spectrometry, and gel permeation chromatography. The inherent viscosity of the polymer was 0.35 dL/g in tetrahydrofuran. The degree of branching was 0.53, which confirmed the branched architecture of the polymer. Furthermore, thermogravimetric analysis, differential scanning calorimetry, and polarized optical microscopy were used to examine the thermal stability and thermotropic liquid‐crystalline properties of the hyperbranched polyester. The polymer exhibited a nematic mesophase over a wide range of temperatures. The photoreactivity of PAHBP was studied by photolysis under ultraviolet light. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 53–61, 2006  相似文献   

5.
Two sets of hyperbranched polyether epoxies were synthesized to study the effect of substituent, rigidity, and nature of photoactive unit on the thermal and photoresponsive properties. Each set was comprised of one molecule with an acyclic moiety in the repeating unit, and two molecules with a cyclic moiety of varying rigidity (cycle size) in the repeating unit. Two substituents on aromatic rings in the repeating unit were present in one set, and other set was without a substituent. The mesogenic and photoresponsive properties were studied and correlated to the varied structural parameters. The effects of varied molecular structural parameters on phase behavior and photoresponsive properties were very prominent. Out of six monomeric diols, only four have exhibited liquid crystalline phase while the polymers corresponding to all monomeric diols revealed mesophase. The findings in photoresponsive properties were further supported by molecular modeling studies. The changes in refractive index, photoviscosity, and fluorescence intensity with irradiation time substantiated the spectral pattern observed in UV‐Vis spectroscopy. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2774–2786, 2009  相似文献   

6.
A series of linear and hyperbranched polyester epoxies, with varied structural parameters such as kinked structure and different dendritic architectures, were synthesized by A2 + B2, A2 + B3, A3 + B2, and A3 + B3 approaches. The structures of synthesized monomers and polymers were confirmed by Fourier transform infrared, 1H NMR, and 13C NMR spectroscopic techniques. The effect of varied structural parameters on phase behavior and photoresponsive properties was investigated by using differential scanning calorimeter, thermal optical polarized microscope, UV–visible spectroscopy, photoviscosity, and refractive index studies. The transition temperatures of hyperbranched polymers were higher than that of the corresponding linear analogues. All the polymers showed nematic phase (nematic droplets) over a broad temperature range. The effect of kinked structural unit on photoresponsive property is less in both linear and hyperbranched architectures. Although the effect of architectural nature is highly considerable within the hyperbranched architectures, the polymer (HPE–33) synthesized by A3 + B3 approach showed highest rate of photocrosslinking, followed by HPE–I 32; HPE–T 32, and HPE–23, which were synthesized by A3 + B2 and A2 + B3 approaches, respectively. The findings in photoresponsive properties were further supported by molecular modeling studies. Substantial variation of refractive index (0.015–0.024) indicates that these polymers could be used for optical recording. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
A series of main chain photoactive liquid crystalline polyethers, containing rigid bisbenzylidene photoactive mesogen and flexible methylene spacers, were synthesized by polycondensation of bisbenzylidene diols and dibromoalkanes. The polyethers were characterized with 1H NMR, gel permeation chromatography (GPC), differential scanning calorimeter (DSC), thermo gravimetric analyzer (TGA), and polarized light optical microscopy. The individual and combined effects of spacer length and number of methoxy substituents on mesogenic and photoactive properties were investigated. Both first order and second order transition temperatures decreased with increased spacer length and the number of substituents. The combined effect of spacers and substituents drastically reduced the transition temperatures. All monomers and polymers showed mainly the smectic mesophase. In a few cases, nematic droplets along with the smectic phase were observed. The width of the liquid crystalline phase reduced with an increasing number of methoxy substituents on mesogenic unit. Variation of spacer length has a negligible effect on photocycloaddition. However, steric hinderance caused by the substituents decreased the photoactivity as the number of substituents increased. Total energies of crosslinked dimers calculated from modeling studies supported the above findings. Intermolecular photocycloaddition was also confirmed by photoviscosity measurement. The refractive index change was found to be in the range of 0.017–0.031. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2143–2155, 2009  相似文献   

8.
Liquid crystalline polymers containing sodium sulfonate groups pendant to the polymer backbone were synthesized by an interfacial condensation reaction of brilliant yellow, a sulfonate-containing monomer, with 4,4′-dihydroxy-α,α′-dimethyl benzalazine and a 50/50 mixture of sebacoyl and dodecanedioyl dichlorides. Polymers containing up to ca. 4 mol% brilliant yellow were characterized by elemental analysis and ultraviolet spectroscopy. The polymers were thermally stable to about 300°C, and they exhibited a broad nematic mesophase region of 70–100°C. The solution viscosity behavior in chloroform suggested that intramolecular associations of the sulfonate groups occurred at low polymer concentrations and intermolecular associations predominated at higher concentrations.  相似文献   

9.
Liquid crystalline ionomers containing sulfonate groups on the terminal unit of the chain were synthesized by an interfacial condensation reaction of 4,4′-dihydroxy-α,α′-dimethyl benzalazine, the monofunctional dye fast yellow (FY), and a 50/50 mixture of sebacoyl and dodecanedioyl dichlorides. The weight-average molecular weights were estimated from inherent viscosity measurements to be between 6000–11,000 and the sodium sulfonate concentrations ranged from 0–18.4 meq/100 g polymer. Elemental analyses, however, indicated much higher molecular weights, which suggested that there was a distribution of chains with one, two, or no FY endgroups. The polymers were semicrystalline and melted at ca. 140°C to form nematic mesophases that were stable over a temperature range of ca. 80°C. They were thermally stable to about 350°C. The ionomeric nature of the polymers was confirmed by the presence of intermolecular associations in nonpolar solvents, as demonstrated by dilute solution viscosity measurements.  相似文献   

10.
The effects of the hyperbranched polyester with hydroxyl end groups (HBPE‐OH) on the curing behavior and toughening performance of a commercial epoxy resin (diglycidyl ether of bisphenol A, DGEBA) were presented. The addition of HBPE‐OH into DGEBA strongly increased its curing rate and conversion of epoxide group due to the catalytic effect of hydroxyl groups in HBPE‐OH and the low viscosity of the blend at curing temperature. The improvements on impact strength and critical stress intensity factor (or fracture toughness, K1c) were observed with adding HBPE‐OH. The impact strength was 8.04 kJ m?1 when HBPE‐OH reached 15 wt% and the K1c value was approximately two times the value of pure epoxy resin when HBPE‐OH content was 20 wt%. The morphology of the blends was also investigated, which indicated that HBPE‐OH particles, as a second phase in the epoxy matrix, combined with each other as the concentration of HBPE‐OH increased. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
Hyperbranched polyesters (HPs) with a variable content of benzoyl terminal groups were synthesized through the chemical modification of the HPs' cores by substituting a controlled fraction of the terminal hydroxyl groups with benzoyl chloride. The resulting hyperbranched polymers that were modified by benzoyl groups (HPs‐B) were characterized by 1H NMR, FTIR, differential scanning calorimetry (DSC), and gel permeation chromatography (GPC). Research results revealed that self‐assembled structures could be formed in selected solvents (acetone/n‐hexane). It was found that the morphologies of self‐assembled structures could be adjusted by controlling the content of outside benzoyl terminal groups in the hyperbranched polymers, the volume ratio of acetone with n‐hexane, and the concentration of the hyperbranched polymers with benzoyl terminal arms. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5554–5561, 2005  相似文献   

12.
A new series of liquid‐crystalline epoxy resins was synthesized, and their mesomorphic behavior was investigated with differential scanning calorimetry, polarized optical microscopy, and wide‐angle X‐ray scattering. These glycidylic compounds had central aromatic imine mesogens derived from benzidine and aliphatic spacers of up to 10 methylene units that linked the mesogens to the glycidylic groups. Crosslinking these monomers with primary aromatic diamines led to nematic networks, some of which contained crystal inclusions. However, through curing with tertiary amines as catalytic agents or through copolymerization with different proportions of the nonmesomorphic epoxy monomer and primary amines as crosslinking agents, smectic C organized thermosets were prepared when the spacers had at least four methylene carbons. When they had fewer than four, the networks were nematic. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3631–3643, 2004  相似文献   

13.
We synthesized novel epoxy‐terminated monomers on the basis of imine groups with spacers of different lengths between mesogens and reactive groups and examined their mesogenic properties. Their reaction with primary aromatic diamines and tertiary amines was carried out to investigate the formation of liquid‐crystalline thermosets. We explored how the curing conditions and the structures of the monomers and amines affected the formation of ordered networks. The special symmetry of a 1,5‐disubstituted naphthalene unit in the central core led to nematic mesophases in the pure liquid‐crystalline epoxy resins, and thermosets with locked nematic textures were obtained in all cases, regardless of the length of the spacer. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1536–1544, 2003  相似文献   

14.
Liquid‐crystalline thermosets (LCTs) were prepared by the curing of difunctional liquid‐crystalline dimeric epoxy monomers with imine moieties in the mesogenic core and central spacers of different lengths. Tertiary amines were used as catalysts in different proportions. The locked mesophases of the LCTs were characterized by polarized optical microscopy and wide‐angle X‐ray scattering and identified as smectic‐C, regardless of their smectic‐A or smectic‐C initial state. The influence of a 7.1‐T magnetic field on the macroscopic orientation of these materials was studied by dynamic mechanical analysis, and the orientation parameter was determined by IR dichroism. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3916–3926, 2002  相似文献   

15.
Liquid crystalline epoxy resins were synthesized from 4,4′-dihydroxybiphenyl (DHB), which was used as a mesogenic component, and diglycidyl ethers of aliphatic glycols (ethylene glycol and 1,6-hexanediol) which were used as flexible spacers. The synthesis was carried out by the catalytic polyaddition in the melt. Triphenylphosphine was used as the catalyst. The course of the polyaddition was investigated at various molecular ratios of the reactants. It was found that both linear and branched structures were formed in the course of the synthesis. The rates of the formation of the structures were calculated. The epoxy oligomers were investigated by DSC, polarizing microscope, and x-ray and IR spectroscopy. The molecular weight distribution was determined by GPC. The dependence of liquid crystalline properties of the obtained epoxy resins on the molecular weight and on the chain length of the flexible spacer was investigated. The molecular weight of the epoxy oligomers and the length of flexible spacer influence the phase transition temperatures. © 1995 John Wiley & Sons, Inc.  相似文献   

16.
Novel epoxy‐terminated monomers based on imine groups were synthesized and their mesogenic properties studied. Aliphatic spacers of different lengths were introduced between the rigid unit and the glycidylic group, and their liquid‐crystalline behavior was examined. They were reacted with primary aromatic diamines inside a magnetic field so that the formation of anisotropic networks could be investigated. The influence of curing conditions and the structure of monomers and amines on the formation of liquid‐crystal thermosets were investigated. Thermosets with locked nematic textures were obtained in all cases. The influence of a 7.1 T magnetic field on the macroscopic orientation of these materials was studied, and mechanical properties of the resulting networks were evaluated by dynamic mechanical analysis. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1–12, 2003  相似文献   

17.
Terephthaloyl chloride was reacted with 4‐hydroxy benzoic acid to get terephthaloylbis(4‐oxybenzoic) acid, which was characterized and further reacted with epoxy resin [diglycidyl ether of bisphenol A (DGEBA)] to get a liquid‐crystalline epoxy resin (LCEP). This LCEP was characterized by Fourier transform infrared spectrometry, 1H and 13C NMR spectroscopy, differential scanning calorimetry (DSC), and polarized optical microscopy (POM). LCEP was then blended in various compositions with DGEBA and cured with a room temperature curing hardener. The cured blends were characterized by DSC and dynamic mechanical analysis (DMA) for their thermal and viscoelastic properties. The cured blends exhibited higher storage moduli and lower glass‐transition temperatures (tan δmax, from DMA) as compared with that of the pure DGEBA network. The formation of a smectic liquid‐crystalline phase was observed by POM during the curing of LCEP and DGEBA/LCEP blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3375–3383, 2003  相似文献   

18.
Side-chain liquid crystalline (SCLC) silphenylene-siloxane polymers with a phenyl benzoate mesogenic group and polymethylene spacers were prepared and characterized, and their properties were compared with those of equivalent SCLC polymers, SCLCPs, with a biphenyl mesogenic group. With identical spacers and terminal substituents, the melting temperatures of the former were much lower, but the isotropization temperatures were lowered to a lesser extent, than those of the latter, and, consequently, a more thermally stable nematic phase was obtained for the former. Both types of SCLCPs formed nematic phases, while polymethylsiloxanes with the same side-chain mesogens exhibited smectic phases with wider temperature ranges. The lower thermal stability of the mesophases in the silphenylene-siloxane SCLCPs compared to those of the SCLC polymethylsiloxanes can be attributed to both the rigidity of the backbone and the greater separation of the side-chains along the main chains of the former.  相似文献   

19.
1‐Alkynes containing azobenzene mesogenic moieties [HC?C(CH2)9? O? ph? N?N? ph? O? R; R = ethyl ( 1 ), octyl ( 2 ), decyl ( 3 ), (S)‐2‐methylbutyl ( 4 ), or (S)‐1‐ethoxy‐1‐oxopropan‐2‐yl ( 5 ); ph = 1,4‐phenyl] were synthesized and polymerized in the presence of a Rh catalyst {(nbd)Rh+[B(C6H5)4]?; nbd = 2,5‐norbornadiene} to yield a series of liquid‐crystalline polymers in high yields (e.g., >75%). These polymers had moderate molecular weights (number‐average molecular weight ≥ 12,000), high cis contents in the main chain (up to 83%), good thermal stability, and good solubility in common organic solvents, such as tetrahydrofuran, chloroform, and dichloromethane. These polymers were thoroughly characterized by a combination of infrared, nuclear magnetic resonance, thermogravimetric analysis, differential scanning calorimetry, polarized optical microscopy, and two‐dimensional wide‐angle X‐ray diffraction techniques. The liquid‐crystalline behavior of these polymers was dependent on the tail group attached to the azobenzene structure. Poly‐ 1 , which had the shortest tail group, that is, an ethyl group, showed a smectic A mesophase, whereas poly‐ 2 , poly‐ 3 , and poly‐ 5 , which had longer or chiral tail groups, formed smectic C mesophases, and poly‐ 4 , which had another chiral group attached to the azobenzene structure, showed a chiral smectic C mesophase in both the heating and cooling processes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4532–4545, 2006  相似文献   

20.
In this work, mechanical and thermal properties of liquid crystalline epoxides (LCEs) with long lateral substituents from 4 to 12 carbon atoms cured with diaminodiphenylmethane were evaluated and analyzed by dynamic mechanical analysis, tensile tests, scanning electron micrographs (SEM), and thermo‐gravimetrical analysis. The experimental results indicated that the Young's modulus and α, β transitions in crosslinked networks are associated with the length of lateral substituents. The plastic deformation in fracture surfaces was observed by SEM. Thermal stability, water and solvent absorption of cured networks was dependent on the length of lateral substituents. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2835–2841, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号