首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New flame‐retardant epoxy resin compounds containing novolac derivatives with specific aromatic compounds have been developed. After crosslinking reactions between epoxy resin and hardener, the epoxy resin compounds formed highly flame‐retardant network structures that were obtained by including biphenylene and phenylene moieties in the main chains of novolac‐type epoxy resin and phenol novolac resin hardener. The high flame retardancy is due mainly to the stable foam layers that form during combustion because of the low elasticity at high temperatures and the high pyrolysis resistance of the compounds. Furthermore, the addition of excess phenol derivative hardener not only facilitates the formation of the foam layers by decreasing the crosslink densities but also reduces the amount of flammable substances generated from the epoxy resin compounds during combustion. The use of a multifunctional epoxy resin containing four glycidyloxy groups in the compounds improved characteristics such as heat resistance and strength at high temperatures, while maintaining excellent flame retardancy. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
Phosphorus tailings and fly ash both are solid wastes and do harm to the environment. Here, they were added into thermoplastic polyurethane (TPU) matrices together with intumescent flame retardants (IFR), and the synergistic effects between IFR and phosphorus tailings or fly ash for improving the flame retardancy of TPU were investigated. The cone calorimeter test (CCT) results indicated that adding phosphorus tailings or fly ash substitute for part of IFR could obtain a better flame retardant effect. The peak heart release rate (PHRR) of TPU/25 wt% IFR composites exhibited a reduction of 77% than that of neat TPU, and the total smoke production presented a reduction of 16%. However, the PHRR value and total smoke production of the sample TPU/20 wt% IFR/5 wt% phosphorus tailings were reduced by 91% and 57%, respectively, compared to that of neat TPU. The dense char promoted by the presence of IFR and phosphorus tailings or fly ash delayed the diffusion of volatile pyrolysis products and transmission of heat and oxygen to the underlying material. Therefore, a certain amount of phosphorus tailings or fly ash can be used as synergistic agents with IFR to enhance the fire safety of TPU materials. From another aspect, it also provides a promising way for recycling use of phosphorus tailings and fly ash.  相似文献   

3.
Ammonium polyphosphate (APP) and inorganic fillers were applied for improving flame retardancy and mechanical performance of recycled poly(ethylene terephthalate) (RPET). RPET was compounded with 5–10 wt% of talc and glass bead using twin screw extruder then were injection molded with 2 wt% of APP. The effects of fillers contents and APP on properties and flame retardancy of RPET composites were investigated. The incorporation of talc and glass bead as well as the adding of APP significantly improved tensile and flexural modulus of RPET composites. Scanning electron microscope micrographs indicated good distribution of talc, while glass bead was agglomerated on the RPET matrix. Flame‐retardant property of neat RPET and the RPET composites revealed V‐2 of UL‐94 flammability rating. It can be noted that the composites were less dripping because of the synergistic effect of adding talc and glass bead with APP. From thermogravimetric analysis results, larger of residual char contents and lower values of the activation energy were considered for enhancing flame retardancy in the RPET composites. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Flame retardants from vanillin when utilized together with ammonium polyphosphate (APP) yield excellent synergistic flame retardancy toward epoxy resins. Bisphenol A epoxy resins have been widely used due to their excellent mechanical properties, chemical resistance, electrical properties, adhesion, etc., while they are flammable. Environment‐friendly and bio‐based flame retardants have captured increasing attention due to their ecological necessity. In this paper, 3 bio‐based flame retardants were synthesized from abundant and more importantly renewable vanillin, and their chemical structures were determined by 1H NMR and 13C NMR. They were used together with APP (an environment‐friendly commercial flame retardant) to improve the fire resistance of bisphenol A epoxy resin. With the addition APP content of 15 phr, the modified bisphenol A epoxy resin could reach UL‐94V0 rating during vertical burning test and limit oxygen index values of above 35%, but reducing APP content to 10 phr, the flame retardancy became very poor. With the total addition content of 10 phr, the epoxy resins modified by 7 to 9 phr APP and 1 to 3 phr bio‐based flame retardants with epoxy groups or more benzene rings showed excellent flame retardancy with UL‐94V0 rating and limit oxygen index values of around 29%. The Tgs of the epoxy resins could be remained or even increased after introducing bio‐based flame retardants, as the control; those of APP alone‐modified epoxy resins compromised a lot. The green synergistic flame‐retardant systems have a great potential to be used in high‐performance materials.  相似文献   

5.
In this work, we reported the synthesis, characterization of Ce‐doped titania nanotubes (Ce‐TNTs), and application in flame retardancy of an intumescent flame‐retardant polystyrene (PS/IFR) system. The flame retardancy of polystyrene (PS) composite that was composed of pentaerythritol, microencapsulated ammonium polyphosphate, and PS was enhanced significantly by adding a small amount (0.1 wt%) of (Ce‐TNTs). The thermal properties of the flame‐retardant PS were investigated by thermogravimetric analysis, limiting oxygen index (LOI), vertical burning test (UL‐94), scanning electronic microscopy, dynamic mechanical thermal analysis, and the real‐time Fourier transform infrared spectrometry (FTIR). The maximal decomposition rate temperature of PS/IFR containing Ce‐TNTs in air is much higher than that of other PS composite without Ce‐TNTs. The LOI value of PS/IFR that contained 0.1 wt% of Ce‐TNTs was increased from 27.0 to 28.5, and the UL‐94 rating was also enhanced to V‐0 from no rating when the total loading of additive was the same. The real‐time FTIR showed that the degradation process was changed after the addition of TNTs. All results indicated that Ce‐TNTs had a significant synergistic effect on the flame retardancy of PS/IFR. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.

A novel phosphorous containing flame retardant epoxy resin is synthesized by modifying the epoxy resin initially with phosphoric acid and further with aluminum hydroxide (ATH) to enhance the fire retardancy of the modified epoxy resin. The several phosphorous modified epoxy resin to ATH mass ratios were used to study the effect of ATH addition on epoxy. Thermal and mechanical properties. The structure of the modified flame retardant epoxy resin was characterized using Fourier-transform infrared spectroscopy (FTIR) while thermal degradation behavior and flame retardant properties were examined using thermo-gravimetric analysis (TGA) and UL-94 testing. Furthermore, ultimate tensile strength and young modulus were analyzed to study the effect of ATH addition on mechanical properties. The findings indicated that fire retardancy of ATH reinforced modified ep oxy resin is higher than virgin and phosphorous modified epoxy resin and depicted eminent flame retardant properties with suitable mechanical properties.

  相似文献   

7.
The degradation kinetics of polycarbonate with flame retardant additive was investigated by means of thermogravimetric analysis. The samples were heated from 30 to 900°C in nitrogen atmosphere, with three different heating rates: 5, 10 and 20°C min–1. The Vyazovkin model-free kinetics method was applied to calculate the activation energy (E a) of the degradation process as a function of conversion and temperature. The results indicated that the polycarbonate without flame retardant additive starts to loose mass slightly over 380°C and the polycarbonate with flame retardant additive, slightly over 390°C (with heating rate of 5°C min–1). The activation energy for flame retardant polycarbonate and normal polycarbonate were 190 and 165 kJ mol–1, respectively.  相似文献   

8.
In this study, the flammability and kinetic behavior of flame retardant unsaturated polyester (UP)/phenolic resin were investigated. The flame retardant ammonium polyphosphate (APP) was used in this research to improve the flame resistance of a UP/phenolic resin interpenetrating polymer network (IPN). The flame resistance of UP improved from none to V-0 classification by adding phenolic resin and APP. Kinetic behavior study of UP, UP/phenolic, and APP-filled UP/phenolic IPN was carried out by the Borchardt and Daniels method. The results indicated that modification of flammable UP resin markedly improved the total heat release volume of UP and the flame retardancy of the IPN network structure was also enhanced.  相似文献   

9.
The surface chemical modified aluminum hypophosphite (AHP) defined as MAHP was successful prepared through P–H bonds on AHP surface reacted with the aldehyde groups in hexa‐(4‐aldehyde‐phenoxy)‐cyclotriphosphazene made in our lab. The wettability of the flame retardants was evaluated by water contact angle tests, and the water contact angle of the prepared MAHP dramatically increased from 0° for AHP to 145°, which indicated the surface modification made the superhydrophilic AHP into superior hydrophobic MAHP. The prepared MAHP and AHP, respectively, incorporated into polyamide 6 (PA6) matrix to prepare flame retardant PA6 composites and the fire retardancy and thermal degradation behavior of flame retardant PA6 composites were investigated by limiting oxygen index, vertical burning test (UL‐94), cone calorimeter, and thermogravimetric analysis tests. The morphologies and chemical compositions of the char residues for PA6 composites were investigated by scanning electron microscopy and X‐ray photoelectron spectroscopy, respectively. The water resistant properties of flame retardant PA6 composites were evaluated by putting the samples into distilled water at 70°C for 168 hr, and the mechanical properties for flame retardant PA6 composites were investigated by the tensile, flexural, and Izod impact strength tests. The results demonstrated that the PA6/MAHP composites successfully passed UL‐94 V‐0 flammability rating, and the limiting oxygen index value was 27.6% when the loading amount of MAHP was 21 wt%. However, there is no rating in vertical burning tests for PA6/AHP composite with the same amount of AHP, which indicated the surface modification of AHP enhanced the flame retardancy efficiency for PA6 composites. The morphological structures and analysis of X‐ray photoelectron spectroscopy of char residues revealed that the surface modification of AHP benefited to the formation of a sufficient, flame retardant elements rich, more compact and homogeneous char layer on the materials surface during combustion, which prevented the heat transmission and diffusion, limit the production of combustible gases, inhibit the emission of smoke and then led to the reduction of the heat release rate and smoke produce rate. The mechanical properties results revealed that the surface modification of AHP enhanced the mechanical properties, especially the Izod impact strength comparing with that of PA6/AHP composites with the same amount of flame retardant. After water resistance tests, the PA6/MAHP composites remained superior flame retardancy and presented continuous and compact char layer after cone calorimeter tests; however, the fire retardancy for PA6/AHP composite obviously decreased, and the char layer was discontinuous with big hole caused by the extraction of AHP by water during water resistance tests. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
合成了一种9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)的衍生物——聚苯氧基磷酸-2-10-氢-9-氧杂-磷杂菲基对苯二酚酯(POPP), 以间苯二胺(m-PDA)为固化剂, 环氧树脂(EP)为基料, POPP为阻燃剂, 复配聚磷酸铵(APP), 制备了不同磷含量的阻燃环氧树脂. 利用极限氧指数(LOI)和垂直燃烧(UL94)实验表征了环氧树脂的阻燃性能; 以热重分析、 锥型量热和扫描电镜分析了阻燃环氧树脂的热性能和表面形态. 研究结果表明, 阻燃剂总加入量(质量分数)为5%时即可达到UL94 V-0级, 同时LOI值为27.7%; 当总加入量为15%, 即wPOPP=5%, wAPP=10 %时, 其LOI值可达到33.8%. 随着磷含量的增加, 阻燃环氧树脂的初始降解温度略有降低, 但高温下的残炭率明显增加. POPP/APP的加入在很大程度上降低了环氧树脂的热释放速率、 有效燃烧热、 烟释放量和有毒气体释放量. 阻燃环氧树脂在高温下形成比较稳定的致密膨胀炭层, 为底层的环氧树脂主体隔绝了分解产物及热量和氧气交换, 增强了高温下的热稳定性.  相似文献   

11.
Polyoxymethylene (POM), having the lowest limiting oxygen index (LOI) (only ∼ 15%), is well known as the most difficult to be flame retarded plastic among all the polymers. In this paper, a novel synergistic flame retardant system composed of aluminium hydroxide (ATH), melamine (ME) and novolac resin was designed and successfully applied to flame retard POM. ATH took effects through heat absorption and water release. Both ME and novolac could react with the decomposition product of POM, formaldehyde, thus improving the flame retardancy. Particularly, novolac resin and ME played the roles of macromolecular charring agent and gas source, enhancing the flame retarding actions in the condensed and gaseous phases, respectively. This ternary synergistic system exhibited fine flame retardancy for POM (UL94 V-1 rating for 1.6 mm bar), and the obtained flame retardant POM also showed good processability and mechanical properties due to the lubrication, compatibilization and aid-dispersion effects of novolac resin.  相似文献   

12.
The flame retardancy of a novel intumescent flame‐retardant polypropylene (IFR‐PP) system, which was composed of a charring agent (CA), ammonium polyphosphate (APP), and polypropylene (PP), could be enhanced significantly by adding a small amount (1.0 wt%) of an organic montmorillonite (O‐MMT). The synergistic flame‐retardant effect was studied systematically. The thermal stability and combustion behavior of the flame‐retarded PP were also investigated by thermogravimetric analysis (TGA), limiting oxygen index (LOI), vertical burning test (UL‐94), scanning electronic microscopy (SEM), and cone calorimeter test (CCT). TGA results demonstrated that the onset decomposition temperatures of IFR‐PP samples, with or without O‐MMT, were higher than that of neat PP. Compared with IFR‐PP, the LOI value of IFR‐PP containing 1.0 wt% O‐MMT was increased from 30.8 to 33.0, and the UL‐94 rating was also enhanced to V‐0 from V‐1 when the total loading of flame retardant was the same. The cone calorimeter results showed that the IFR‐PP with 1.0 wt% of O‐MMT had the lowest heat release rate (HRR), total heat release (THR), total smoke production (TSP), CO production (COP), CO2 production (CO2P), and mass loss (ML) of all the studied IFR‐PP samples, with or without O‐MMT. All these results indicated that O‐MMT had a significantly synergistic effect on the flame‐retardancy of IFR‐PP at a low content of O‐MMT. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
In the present study, the effects of intumescent flame retardant (IFR) incorporating organically modified montmorillonite (O‐MMT) on the flame retardancy and melt stability of PLA were investigated. The flame‐retardant PLA was prepared using a twin‐screw extruder and a two roll mill. Then, the influence of IFR and MMT on flame retardancy and melt stability was thoroughly investigated by means of limiting oxygen index (LOI), vertical burning test, thermogravimetric analysis, scanning electronic microscopy, melt flow index (MFI), and parallel plate rheological experiments. The experimental results show that the IFR system in combination with MMT has excellent fire retardancy, i.e. the sample could achieve a UL94 V‐0 rating and LOI value increases from 20.1 for pristine PLA to 27.5 for the flame‐retarded PLA. MFI and rheological measurement indicate that O‐MMT significantly enhances the melt stability and suppresses the melt dripping. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The liquid oxygen compatible epoxy resin was obtained by the polycondensation between tetrabromobisphenol A and neat epoxy resins. The results of liquid oxygen impact test indicated that the synthetic epoxy resins were compatible with liquid oxygen. The relationship between impact reaction sensitivity (IRS) and flame retardancy were studied by liquid oxygen impact test and limiting oxygen index test. The results showed that the flame‐retardant modification of epoxy resin was valuable to reduce the IRS. The thermal gravimetric analysis results indicated that the Br · radical was quickly released in relatively low temperature (approximately 370°C) for compatible epoxy resin. The Br · radical was a key factor to promote the epoxy resin compatible with the liquid oxygen. The X‐ray photoelectron spectroscopy was used to survey the distribution of functional groups on the surface of samples before and after impact. The results showed that the oxidation reaction and carbonization process may occur on the surface of samples after impact. The liquid oxygen compatibility mechanism is proposed in this paper. The bromine‐containing epoxy resin has the potential to be the material used in liquid oxygen tank. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The flame‐retardant polylactic acid (PLA) has been prepared via mixing the flame retardant TGIC‐DOPO derived from phosphaphenanthrene and triazine groups into matrix. The flame retardancy of TGIC‐DOPO/PLA composites was characterized using the limiting oxygen index (LOI), vertical burning test (UL94), and cone calorimeter test. Results reveal that the 10%TGIC‐DOPO/PLA composite obtained 26.1% of LOI and passed UL94 V‐0 rating. The flame‐retardant mechanism of PLA composites was characterized via thermogravimetric analysis (TGA), pyrolysis gas chromatography/mass spectroscopy, and TGA‐Fourier transform infrared. It discloses that TGIC‐DOPO promoted PLA decomposing and dripping early, and it also released the fragments with quenching and dilution effects. These actions of TGIC‐DOPO contribute to reducing the burning intensity and extinguishing the fire on droplets, thus imposing better flame retardancy to PLA. When TGIC‐DOPO was partly replaced by melamine cyanuric with dilution effect and hexa‐phenoxy‐cyclotriphosphazene with quenching effect in composites respectively, the results confirm that TGIC‐DOPO utilize well‐combination in dilution effect and quenching effect to flame retard PLA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The effects of β‐cyclodextrin containing silicone oligomer(CDS), as a synergistic agent, on the flame retardancy and mechanical properties of intumescent flame retardant polypropylene composites were studied by adding different amounts of CDS in intumescent flame retardants. The limiting oxygen index (LOI), UL‐94 test, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) were utilized to evaluate the synergistic effects of CDS in the composites. It was found that after a little amount of CDS partially replaced a charring‐foaming agent (CFA) in IFR, LOI values of the composites were enhanced and they obtained a UL‐94 V‐0 rating. IFR system containing 6.25wt% CDS presented the best flame retardancy in PP. The experimental results obtained from LOI and UL‐94, TGA, SEM, and mechanical properties indicated that the combination of CDS and CFA presents synergistic effects in flame retardancy, char formation, and mechanical properties of the composites. This is probably due to different structures of polyhydroxyl macromolecules (CDS and CFA), the existence of dimethyl silicone group in CDS, and the toughness of epoxy silicon chain in CDS. SEM results proved that the interfacial compatibility between IFR and PP was improved by CDS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Synthesis and applications of biscyclic phosphorus flame retardants   总被引:1,自引:0,他引:1  
The influence of structural effects of organo-phosphorus flame retardants (FRs) on their flame retardant action was investigated. A series of spirobisphosphorus compounds including 3,9-dibutyl-3,9-dioxo-2,4,8,10-tetraoxa-3,9-diphosphaspiro-5,5-undecane were prepared using various synthetic methods such as the Arbuzov reaction. The chemical structure of the product was confirmed by 1H and 31P NMR. Thermogravimetric analysis (TGA) results reveal that these cyclic phosphorus compounds show a single step degradation in the range of 250-400 °C and act in the gas phase rather than in the condensed phase. The obtained products were blended with an acrylonitrile-butadiene-styrene copolymer (ABS) or polycarbonate (PC) and their flame retardant behavior was evaluated using a UL-94 vertical test. V-0 ratings are achieved at 15-35 wt% loading of FR for ABS and at a much lesser amount of loading for PC. In both cases, it is apparent that the flame retardancy is strongly dependent on the P content of the flame retardant.  相似文献   

18.
As flammable natural rubber (NR) becomes more ubiquitous in industrial fields, there is a growing need for safe and effective flame retardant treatments through efficient techniques. Remarkably, our developed highly efficient natural tannic acid (TA)-based intumescent flame-retardant system (AGT) has the unique function in the rubber flame retardant aspect. Meanwhile, the developed coating method through polyurethane elastomer (PU) both as adhesive medium and a carbonforming agent can not only minimize the influence of flame retardant on the desirable intrinsic properties of base polymer and also maximize the efficiency of flame retardant. The flame-retardant coating (AGT/PU) exhibits highly efficient flame retardant performances reflected by a 31.9% reduction in peak heat release rate and a 27.3% reduction in total heat release and a 26.2% reduction in total smoke production with 50 wt% loading in 1 mm thick coating due to synergistic flame retardant effects. More importantly, the excellent flame retardancy performance are obtained by the PU@AGT10, as reflected in flame retardancy index (FRI) value of 11.88 makes it as excellent flame retardancy performance. While many physically mixed flame retardants are usually seriously detrimental to mechanical properties of NR, the influence of AGT/PU coating on mechanical properties of NR decreases obviously because fire retardant just directly impacts on PU adhesive layer rather than NR matrix, and the reinforcement function of graphene is also much significant. Moreover, the coating method requires just less flame retardant to achieve high flame retardant effect for NR. These findings suggest that significant opportunities for flame retardant polymer materials in industry.  相似文献   

19.
Rod‐like magnesium hydroxide (MH) particles were prepared via coprecipitation of the magnesium salt with foreign ions, such as copper(II), zinc(II), iron(III), and nickel(II). Flame retardant polypropylene (PP) composites were fabricated using these particles. The microstructure, flame retardation, mechanical properties, thermal behavior, and oxidation‐induced temperature were characterized. It was found that foreign ion compounds increased the flame retardancy. MH containing a zinc compound presented a similar performance as that of neat MH. The presence of a copper compound decreased the thermal behavior and mechanical properties of the flame retardant composite, while iron and nickel compounds brought some improvements. In addition, the thermal degradation mechanisms of the flame retardant composites were investigated by Fourier transform infrared (FTIR) spectroscopy at different temperatures. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
An innovative way to improve fire‐retardant properties of different polymers by applying intumescent coatings on their surface has been studied. Two polymers have been investigated: polypropylene and polycarbonate. The surfaces were first subjected to a flaming treatment in order to clean them and to increase their wettability and thus improve the adhesion of the coatings. Two different formulations were then applied: a transparent intumescent varnish, based on an acrylic resin, and an intumescent coating based on polyvinylacetate resin. Different parameters have been obtained using several fire tests. The cone calorimeter, the limiting oxygen index and UL94 tests have been carried out to evaluate the fire‐retardant properties obtained for both the intumescent coating and the intumescent varnish. Results clearly evidence an outstanding improvement of the fire‐retardant properties using intumescent coatings without any incorporation of flame retardants in the bulk. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号