首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acrylonitrile butadiene rubber (NBR)/poly(vinyl chloride) (PVC) alloy, filled with anhydrous copper sulfate (CuSO4) particles, was investigated for the first time. The material could be crosslinked in the existence of CuSO4 by heat pressing, without any other crosslink agents. The crosslinking in the material was induced by in situ coordination between nitrile groups of NBR and solid CuSO4 particles, which is thoroughly different from the traditional vulcanization of rubber materials. The coordination crosslinking is formed during heat pressing, other than in solutions, which is valuable for practical applications. The resulting material showed excellent tensile properties, and the maximum strength was close to 90 MPa. The CuSO4 particles act not only as crosslink agents, but also as reinforcing fillers in the polymer matrix. In this work, dynamic mechanical analysis, differential scanning calorimetry, Fourier transform infrared spectrum, X‐ray photoelectron spectroscopy, scanning electron microscope, energy‐dispersive X‐ray spectrum, equilibrium swelling method, and tensile test were performed for the characterization of the material. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 378–386, 2006  相似文献   

2.
Crosslinking behaviors of acrylonitrile butadiene rubber (NBR)/poly (vinyl chloride) (PVC) alloy, filled with anhydrous copper sulfate (CuSO4) particles, were investigated for the first time by dynamic mechanical analysis (DMA) under hetero and isothermal modes, respectively. In the heterothermal testing, (NBR/PVC)/CuSO4 compound showed two marked increases in the storage modulus (E′), corresponding to coordination crosslinking of NBR-CuSO4 and self-crosslinking of NBR and PVC respectively. During the isothermal testing, a dramatic increase in E′ was found at the initial stage while that of original NBR/PVC alloy was not detected. The marked increase in E′ of (NBR/PVC)/CuSO4 compound was mainly due to the crosslinking induced by coordination between  CN and Cu2+. The increasing extent of E′ increased with the rise of CuSO4 content, suggesting the formation of a greater number of crosslinks. Moreover, the activation energy (Ea) of crosslinking process was about 139 kJ/mol. In this work, fourier transform infrared spectrum (FT-IR) and equilibrium swelling method were also performed for the characterization of the compound. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 41–51, 2007  相似文献   

3.
In this work, preparation and properties of different nanoclays modified by organic amines (octadecyl amine, a primary amine, and hexadecyltrimethylammonium bromide, a tertiary amine) and brominated polyisobutylene‐co‐paramethylstyrene (BIMS)‐clay nanocomposites are reported. The clays and the rubber nanocomposites have been characterized with the help of Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and X‐ray diffraction (XRD). The X‐ray diffraction peaks observed in the range of 3 °–10 ° for the modified clays disappear in the rubber nanocomposites. TEM photographs show predominantly exfoliation of the clays in the range of 12 ± 4 nm in the BIMS. In the FTIR spectra of the nanocomposites, there are common peaks of virgin rubber as well as those of the clays. Excellent improvement in mechanical properties like tensile strength, elongation at break, and modulus is observed on incorporation of the nanoclays in the BIMS. Structure‐property correlation in the above nanocomposites is attempted. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4489–4502, 2004  相似文献   

4.
Jute fiber (Corchorus capsularis, JRC‐321 variety), an environmentally and ecologically friendly product, was chemically modified by the cooking alkaline sulfite process to unbleached and bleached pulps, which were further modified via graft copolymerization with acrylamide monomer with a complex initiating system: CuSO4/glycine/KHSO5. The above samples were characterized and morphologically analyzed by IR, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy, and X‐ray diffraction. The biodegradability and superabsorbency of the samples were also evaluated for their novel commercial importance as jute‐based superabsorbents. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2696–2703, 2003  相似文献   

5.
A novel microphase‐inversion method was proposed for the preparation of TiO2–SiO2/poly(methyl methacrylate) core–shell nanocomposite particles. The inorganic–polymer nanocomposites were first synthesized via a free‐radical copolymerization in a tetrahydrofuran solution, and the poor solvent was added slowly to induce the microphase separation of the nanocomposite and result in the formation of nanoparticles. The average particle sizes of the microspheres ranged from 70 to 1000 nm, depending on the reaction conditions. Transmission electron microscopy and scanning electron microscopy indicated a core–shell morphology for the obtained microspheres. Thermogravimetric analysis and X‐ray photoelectron spectroscopy measurements confirmed that the surface of the nanocomposite microspheres was polymer‐rich, and this was consistent with the core–shell morphology. The influence of the synthetic conditions, such as the inorganic composition and the content of the crosslinking monomer, on the particle properties was studied in detail. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3911–3920, 2006  相似文献   

6.
Silver nanoparticles were prepared by UV irradiation from silver salts, such as AgBF4 or AgNO3, when dissolved in an amphiphilic film of poly((oxyethylene)9 methacrylate)‐graft‐poly((dimethyl siloxane)n methacrylate), POEM‐g‐mPDMS. The in situ formation of silver nanoparticles in the graft copolymer film was confirmed by transmission electron microscopy (TEM), UV‐visible spectroscopy, and wide angle X‐ray scattering (WAXS). The results demonstrated that the use of AgBF4 yielded silver nanoparticles with a smaller size (~5 nm) and narrower particle distribution when compared with AgNO3. The formation of silver nanoparticles was explained in terms of the interaction strength of the silver ions with the ether oxygens of POEM, as revealed by differential scanning calorimetry (DSC) and X‐ray photoelectron spectroscopy (XPS). It was thus concluded that a stronger interaction of silver ions with the ether oxygens results in a more stable formation of silver nanoparticles, which produces uniform and small‐sized nanoparticles. DSC and small angle X‐ray scattering (SAXS) data also showed the selective incorporation and in situ reduction of the silver ions within the hydrophilic POEM domains. Excellent mechanical properties of the nanocomposite films (3–5 × 105 dyn/cm2) were observed, mostly because of the confinement of silver nanoparticles in the POEM chains as well as interfaces created by the microphase separation of the graft copolymer film. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1283–1290, 2007  相似文献   

7.
Encapsulation of nickel oxide (NiO) particles is of great interest to the researchers as such modification produces remarkable improvement in properties and versatility in application potential. In this investigation, nanosized NiO particles were first prepared by calcination of nickel hydroxide precursor obtained using a simple liquid‐phase process. The produced NiO particles were stabilized with oleic acid and then treated with tetraethylorthosilicate to produce NiO/SiO2 composite seed particles. Finally tri‐layered inorganic/organic composite particles were prepared by seeded copolymerization of styrene and 2‐hydroxyethyl methacrylate (HEMA) in the presence of NiO/SiO2 composite seed particles. The produced composite particles named as NiO/SiO2/P(S‐HEMA) were colloidally stable, and the obtained particles were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X‐ray diffraction, X‐ray photoelectron spectroscopy and thermogravimetric analyses. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Transparent thin films of calcium‐ion‐incorporated polymer composites were synthesized with calcium carbonate (CaCO3) and polymers such as poly(acrylic acid) (PAA), poly(ethylene glycol) (PEG), and methylcellulose. The homogeneous distribution of Ca2+ in the composite films was observed because of the high concentration of COO? groups along the PAA backbone for the complexation of Ca2+ ions. The optical transparency of the composites depends on the weight percentages of the three polymers and the molar concentration of CaCO3 in the composites. Maximum transparency was obtained for a composite film with a PAA/CaCO3 ratio of 9:1. The results indicated that methylcellulose improved the film‐forming capabilities and that PEG improved the transparency of the composites. All polymer complexes were characterized with X‐ray diffraction, fourier transfer infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, dynamic mechanical analysis, and optical transparency measurements. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4459–4465, 2004  相似文献   

9.
Conducting polythiophene (PTh)/single‐wall carbon nanotubes (SWNTs) composites were synthesized by the in situ chemical oxidative polymerization method. The resulting cablelike morphology of the composite (SWNT–PTh) structures was characterized with elemental analysis, X‐ray photoelectron spectroscopy, Raman spectroscopy, Fourier transform infrared, ultraviolet–visible spectroscopy, field emission scanning electron microscopy, thermogravimetric analysis, X‐ray diffraction, and transmission electron microscopy. The standard four‐point‐probe method was used to measure the conductivity of the samples. Field emission scanning electron microscopy and transmission electron microscopy analysis revealed that the SWNT–PTh composites were core (SWNTs) and shell (PTh) hybrid structures. Spectroscopic analysis data for the composites were almost identical to those for PTh, supporting the idea that SWNTs served as templates in the formation of a coaxial nanostructure for the composites. The physical properties of the composites were measured and also showed that the SWNTs were modified by conducting PTh with an enhancement of various properties. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5283–5290, 2006  相似文献   

10.
Novel multifunctional titanium dioxide (TiO2)/polystyrene/magnetite composite hybrid polymer particle dispersions with TiO2 nanoparticles in the surface and magnetite nanoparticles encapsulated inside the polymer matrix were produced by Pickering miniemulsion polymerization in one single step. Whereas TiO2 nanoparticles were used to impart photocatalytic functionality and colloidal stability, magnetite nanoparticles were incorporated to allow an easy extraction for recovery and reuse of the composite multifunctional particles. The morphology of the composite particles was assessed by scanning transition electron microscopy (STEM) and energy‐dispersive X‐ray spectroscopy (EDX). The paramagnetism of the particles was analyzed using a SQUID magnetometer and their photocatalytic activity was assessed by degrading methylene blue (MB) solutions under UV light and by recovering and reusing of the particles in five consecutive cycles. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3350–3356  相似文献   

11.
The dynamic mechanical behavior of uncrosslinked (thermoplastic) and crosslinked (thermosetting) acrylonitrile butadiene rubber/poly(ethylene‐co‐vinyl acetate) (NBR/EVA) blends was studied with reference to the effect of blend ratio, crosslinking systems, frequency, and temperature. Different crosslinked systems were prepared using peroxide (DCP), sulfur, and mixed crosslink systems. The glass‐transition behavior of the blends was affected by the blend ratio, the nature of crosslinking, and frequency. sThe damping properties of the blends increased with NBR content. The variations in tan δmax were in accordance with morphology changes in the blends. From tan δ values of peroxide‐cured NBR, EVA, and blends the crosslinking effect of DCP was more predominant in NBR. The morphology of the uncrosslinked blends was examined using scanning electron and optical microscopes. Cocontinuous morphology was observed between 40 and 60 wt % of NBR. The particle size distribution curve of the blends was also drawn. The Arrhenius relationship was used to calculate the activation energy for the glass transition of the blends, and it decreased with an increase in the NBR content. Various theoretical models were used to predict the modulus of the blends. From wide‐angle X‐ray scattering studies, the degree of crystallinity of the blends decreased with an increasing NBR content. The thermal behavior of the uncrosslinked and crosslinked systems of NBR/EVA blends was analyzed using a differential scanning calorimeter. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1556–1570, 2002  相似文献   

12.
Sulfonated polystyrene (PS) particles were prepared by the sulfonation of PS microspheres with H2SO4. Then, composite particles were synthesized by layer‐by‐layer (LbL) self‐assembly with funtionalized multiwall carbon nanotubes (fMCNTs) and polyelectrolytes on sulfonated PS particles. The amount of fMCNTs on PS particles was adjusted by controlling the number of fMCNT layers by LbL self‐assembly. Composite particles were characterized by ζ‐potential analysis, scanning electron microscopy, and thermal analysis. The electrorheological (ER) properties of composite particles in insulating oil was investigated with varying the number of fMCNT layers under controlled electric fields. It was observed that the number of fMCNT layers was a critical factor to determine the ER properties of composite particles. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1058–1065, 2008  相似文献   

13.
In this work, an inorganic metal salt, zinc chloride (ZnCl2), was mechanically mixed with nitrile butadiene rubber (NBR) to prepare a novel crosslinkable NBR/ZnCl2 composite. ZnCl2 was found to dissolve into NBR upon heating to a designed temperature, which was considered as a result of dissolution process induced by the occurrence of coordination reaction. Consequently, the morphology of the composite could change from an obvious two-phase structure to a macro-homogeneous phase structure. The determination of the coordination bonding in NBR/ZnCl2 composite was done by Fourier transform infrared spectroscopy. The crosslinking procedure of the composite was investigated by dynamic mechanical analysis and differential scanning calorimetry. A Kissinger’s method was used to calculate the active energy. Other characterizations including scanning electron microscopy, elemental analysis, X-ray Diffraction and polarized microscope with a hot stage were used to investigate the morphology of the composite. Furthermore, the resulting material possessed special and excellent tensile properties.  相似文献   

14.
《先进技术聚合物》2018,29(8):2165-2173
Novel chlorinated acrylonitrile butadiene rubber (Cl‐NBR) was prepared from NBR by the alkaline hydrolysis of chloroform by using phase‐transfer catalysis. The formation of Cl‐NBR was monitored by 1H‐NMR, UV‐Vis, and Fourier transform infrared spectroscopic techniques. The percentage of chlorine attached to the rubber chain was estimated by Volhard method. The effect of polar groups on the structural and thermal properties of Cl‐NBR was analyzed by scanning electron microscopy, X‐ray diffraction analysis, differential scanning calorimetry, and thermogravimetric analysis studies. The flame retardant, oil resistance, cure behavior, and mechanical properties of chlorinated elastomer were also analyzed. The proton NMR revealed the attachment of chlorine in the backbone of NBR with new chemical shift values. The C‐Cl stretching of chlorinated NBR was confirmed from Fourier transform infrared. The UV spectrum also supported the formation of chlorinated unit in the NBR chain through the shifts and broadening of absorption peaks. The X‐ray diffraction analysis pattern indicated a decrease in the amorphous domain of NBR with an increase in the level of chemical modification. The increased glass transition temperature obtained from differential scanning calorimetry confirms the increased molecular rigidity of the chlorinated NBR and thermal transitions increased with increase in the level of chemical modification. The thermal stability of Cl‐NBR decreased with an increase in chlorine content. The flame and oil resistance of Cl‐NBR was greatly higher than pure NBR due to the increased polarity of modified rubber. The superior tensile strength of Cl‐NBR (4 times higher than pure NBR) and higher oil resistance find applications in pump diaphragms, aircraft hoses, oil‐lined tubing, and gaskets materials with the excellent flame resistant property.  相似文献   

15.
Poly(vinylidene fluoride)/silica (PVDF/SiO2) hybrid composite films were prepared via sol–gel reactions from mixtures of PVDF and tetraethoxysilane in dimethylacetamide. Their morphology, crystalline structure, and thermal, mechanical, and electrical properties were examined. For morphology measurements, scanning electron microscopy and optical microscopy were applied. X‐ray diffraction and infrared analyses showed that the crystalline structure of PVDF was not changed much by the addition of SiO2, indicating that there was no interaction between PVDF and SiO2. With increasing SiO2 content, the melting temperature rarely changed, the degree of crystallinity and the dielectric constant decreased, and the decomposition temperature slightly increased. A PVDF/SiO2 hybrid composite film with 5 wt % SiO2 exhibited balanced mechanical properties without a severe change in the crystalline structure of PVDF, whereas for the hybrid composites with higher SiO2 contents (>10 wt %), the mechanical properties were reduced, and the spherulite texture of PVDF was significantly disrupted by the presence of SiO2 particles. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 19–30, 2002  相似文献   

16.
The crosslinked structure formed by the metal coordination bonding provides excellent and new properties for rubber materials. Herein, the crosslinking of acrylonitrile‐butadiene rubber (NBR) is induced by introducing aluminum ammonium sulfate (NH4Al(SO4)2·12H2O) particles. The crosslinking behavior, morphology, mechanical properties, and the Akron abrasion resistance of NBR/NH4Al(SO4)2·12H2O composites were fully explored. The results show that the three‐dimensional crosslinking structure is held together by metal–ligand coordination bonds between the nitrile group and AI(III). The coordination crosslink density exhibits a considerable increase with the addition of NH4Al(SO4)2·12H2O. Thus, the mechanical properties and abrasion resistance of the obtained composites are better than that of NBR/sulfur system. Interestingly, the elongation at break for NBR/NH4Al(SO4)2·12H2O composites is over 2000% due to the nature of coordination bonds. The abrasion volume loss decreases to 0.4 cm3 for NBR/NH4Al(SO4)2·12H2O composites with 20 phr NH4Al(SO4)2·12H2O particles as compared to 0.75 cm3 for NBR/sulfur system. The obtained NBR composites with facile preparation and excellent mechanical properties make the composites based on metal coordination bonding attractive for practical use. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 879–886  相似文献   

17.
An Fe3O4/C nanocomposite was synthesized in a microwave‐assisted hydrothermal reaction. This green wet‐chemical approach is simple, low‐cost, and ideal for large‐scale production. The resulting composite material was characterized by transmission electron microscopy, powder X‐ray diffraction, energy‐dispersive X‐ray spectroscopy, Brunauer–Emmett–Teller analysis, X‐ray photoelectron spectroscopy, vibrating sample magnetometry, and UV/Vis spectroscopy. The product possesses porous structures and exhibits superparamagnetic behavior. Interestingly, its functional groups were inherited from the starting materials. This hydrophilic and biocompatible nanocomposite may find applications in catalysis, separation, adsorption, and bionanotechnology.  相似文献   

18.
Nanocomposites were prepared with different grades of nitrile rubber with acrylonitrile contents of 19, 34, and 50%, with styrene–butadiene rubber (23% styrene content), and with polybutadiene rubber with Na‐montmorillonite clay. The clay was modified with stearyl amine and was characterized by X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). The XRD studies showed an increase in the gallery gap upon the modification of the filler by stearyl amine. The intercalation of the amine chains into the clay gallery gap was confirmed by the presence of some extra peaks (2928, 2846, and 1553 cm?1) in the FTIR spectra. The clay–rubber nanocomposites were characterized by TEM and XRD. The mechanical properties were studied for all the compositions. An improvement in the mechanical properties with the degree of filler loading up to a certain level was observed. The changes in the mechanical properties, with changes in the nature and polarity of the rubbers, were explained with the help of XRD and TEM results. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1573–1585, 2004  相似文献   

19.
We present an approach to fabricate ZnO nanowires/polymer composite into three‐dimensional microstructures, based on two‐photon polymerization direct laser writing, a fabrication method that allows submicrometric spatial resolution. The structural integrity of the structures was inferred by scanning electron microscopy, while the presence and distribution of ZnO nanowires was investigated by energy dispersive X‐ray, Raman spectroscopy, and X‐ray diffraction. The optical properties of the produced composite microstructures were verified by imaging the characteristic ZnO emission using a fluorescence microscope. Hence, such approach can be used to develop composite microstructures containing ZnO nanowires aiming at technological applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2014 , 52, 333–337  相似文献   

20.
Stable water‐in‐oil high internal phase emulsions, containing styrene and divinylbenzene monomers and exfoliated montmorillonite, were prepared and polymerized to obtain nanocomposite microcellular materials. The porous structure was investigated by scanning electron microscopy, mercury intrusion porosimetry, and nitrogen adsorption/desorption analyses. The exfoliation of clay was investigated by X‐ray diffraction and transmission electron microscopy analyses. The presence of inorganic filler did not modify the microcellular structure of the composite, while the use of modified clay significantly enhanced its mechanical properties. No influence on the thermal degradation was noted, except for materials with high clay content that tended to deteriorate at lower temperature than the other materials. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4193–4203, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号