首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this paper, we compare two block triangular preconditioners for different linearizations of the Rayleigh–Bénard convection problem discretized with finite element methods. The two preconditioners differ in the nested or nonnested use of a certain approximation of the Schur complement associated to the Navier–Stokes block. First, bounds on the generalized eigenvalues are obtained for the preconditioned systems linearized with both Picard and Newton methods. Then, the performance of the proposed preconditioners is studied in terms of computational time. This investigation reveals some inconsistencies in the literature that are hereby discussed. We observe that the nonnested preconditioner works best both for the Picard and for the Newton cases. Therefore, we further investigate its performance by extending its application to a mixed Picard–Newton scheme. Numerical results of two‐ and three‐dimensional cases show that the convergence is robust with respect to the mesh size. We also give a characterization of the performance of the various preconditioned linearization schemes in terms of the Rayleigh number.  相似文献   

2.
This paper deals with boundary‐value methods (BVMs) for ordinary and neutral differential‐algebraic equations. Different from what has been done in Lei and Jin (Lecture Notes in Computer Science, vol. 1988. Springer: Berlin, 2001; 505–512), here, we directly use BVMs to discretize the equations. The discretization will lead to a nonsymmetric large‐sparse linear system, which can be solved by the GMRES method. In order to accelerate the convergence rate of GMRES method, two Strang‐type block‐circulant preconditioners are suggested: one is for ordinary differential‐algebraic equations (ODAEs), and the other is for neutral differential‐algebraic equations (NDAEs). Under some suitable conditions, it is shown that the preconditioners are invertible, the spectra of the preconditioned systems are clustered, and the solution of iteration converges very rapidly. The numerical experiments further illustrate the effectiveness of the methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
A class of constraint preconditioners for solving two‐by‐two block linear equations with the (1,2)‐block being the transpose of the (2,1)‐block and the (2,2)‐block being zero was investigated in a recent paper of Cao (Numer. Math. 2006; 103 :47–61). In this short note, we extend his idea by allowing the (1,2)‐block to be not equal to the transpose of the (2,1)‐block. Results concerning the spectrum, the form of the eigenvectors and the convergence behaviour of a Krylov subspace method, such as GMRES are presented. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Boundary value methods (BVMs) for ordinary differential equations require the solution of non‐symmetric, large and sparse linear systems. In this paper, these systems are solved by using the generalized minimal residual (GMRES) method. A block‐circulant preconditioner with circulant blocks (BCCB preconditioner) is proposed to speed up the convergence rate of the GMRES method. The BCCB preconditioner is shown to be invertible when the BVM is Ak1,k2‐stable. The spectrum of the preconditioned matrix is clustered and therefore, the preconditioned GMRES method converges fast. Moreover, the operation cost in each iteration of the preconditioned GMRES method by using our BCCB preconditioner is less than that required by using block‐circulant preconditioners proposed earlier. In numerical experiments, we compare the number of iterations of various preconditioners. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
A class of modified block SSOR preconditioners is presented for the symmetric positive definite systems of linear equations, whose coefficient matrices come from the hierarchical-basis finite-element discretizations of the second-order self-adjoint elliptic boundary value problems. These preconditioners include a block SSOR iteration preconditioner, and two inexact block SSOR iteration preconditioners whose diagonal matrices except for the (1,1)-block are approximated by either point symmetric Gauss–Seidel iterations or incomplete Cholesky factorizations, respectively. The optimal relaxation factors involved in these preconditioners and the corresponding optimal condition numbers are estimated in details through two different approaches used by Bank, Dupont and Yserentant (Numer. Math. 52 (1988) 427–458) and Axelsson (Iterative Solution Methods (Cambridge University Press, 1994)). Theoretical analyses show that these modified block SSOR preconditioners are very robust, have nearly optimal convergence rates, and especially, are well suited to difficult problems with rough solutions, discretized using highly nonuniform, adaptively refined meshes.  相似文献   

6.
Factorized sparse approximate inverse (FSAI) preconditioners are robust algorithms for symmetric positive matrices, which are particularly attractive in a parallel computational environment because of their inherent and almost perfect scalability. Their parallel degree is even redundant with respect to the actual capabilities of the current computational architectures. In this work, we present two new approaches for FSAI preconditioners with the aim of improving the algorithm effectiveness by adding some sequentiality to the native formulation. The first one, denoted as block tridiagonal FSAI, is based on a block tridiagonal factorization strategy, whereas the second one, domain decomposition FSAI, is built by reordering the matrix graph according to a multilevel k‐way partitioning method followed by a bandwidth minimization algorithm. We test these preconditioners by solving a set of symmetric positive definite problems arising from different engineering applications. The results are evaluated in terms of performance, scalability, and robustness, showing that both strategies lead to faster convergent schemes regarding the number of iterations and total computational time in comparison with the native FSAI with no significant loss in the algorithmic parallel degree.  相似文献   

7.
We study sweeping preconditioners for symmetric and positive definite block tridiagonal systems of linear equations. The algorithm provides an approximate inverse that can be used directly or in a preconditioned iterative scheme. These algorithms are based on replacing the Schur complements appearing in a block Gaussian elimination direct solve by hierarchical matrix approximations with reduced off‐diagonal ranks. This involves developing low rank hierarchical approximations to inverses. We first provide a convergence analysis for the algorithm for reduced rank hierarchical inverse approximation. These results are then used to prove convergence and preconditioning estimates for the resulting sweeping preconditioner. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
We discuss a class of preconditioning methods for the iterative solution of symmetric algebraic saddle point problems, where the (1, 1) block matrix may be indefinite or singular. Such problems may arise, e.g. from discrete approximations of certain partial differential equations, such as the Maxwell time harmonic equations. We prove that, under mild assumptions on the underlying problem, a class of block preconditioners (including block diagonal, triangular and symmetric indefinite preconditioners) can be chosen in a way which guarantees that the convergence rate of the preconditioned conjugate residuals method is independent of the discretization mesh parameter. We provide examples of such preconditioners that do not require additional scaling. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
Iterative methods of Krylov‐subspace type can be very effective solvers for matrix systems resulting from partial differential equations if appropriate preconditioning is employed. We describe and test block preconditioners based on a Schur complement approximation which uses a multigrid method for finite element approximations of the linearized incompressible Navier‐Stokes equations in streamfunction and vorticity formulation. By using a Picard iteration, we use this technology to solve fully nonlinear Navier‐Stokes problems. The solvers which result scale very well with problem parameters. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

10.
Two‐by‐two block matrices arise in various applications, such as in domain decomposition methods or when solving boundary value problems discretised by finite elements from the separation of the node set of the mesh into ‘fine’ and ‘coarse’ nodes. Matrices with such a structure, in saddle point form arise also in mixed variable finite element methods and in constrained optimisation problems. A general algebraic approach to construct, analyse and control the accuracy of preconditioners for matrices in two‐by‐two block form is presented. This includes both symmetric and nonsymmetric matrices, as well as indefinite matrices. The action of the preconditioners can involve element‐by‐element approximations and/or geometric or algebraic multigrid/multilevel methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
For the large sparse block two-by-two real nonsingular matrices, we establish a general framework of practical and efficient structured preconditioners through matrix transformation and matrix approximations. For the specific versions such as modified block Jacobi-type, modified block Gauss-Seidel-type, and modified block unsymmetric (symmetric) Gauss-Seidel-type preconditioners, we precisely describe their concrete expressions and deliberately analyze eigenvalue distributions and positive definiteness of the preconditioned matrices. Also, we show that when these structured preconditioners are employed to precondition the Krylov subspace methods such as GMRES and restarted GMRES, fast and effective iteration solvers can be obtained for the large sparse systems of linear equations with block two-by-two coefficient matrices. In particular, these structured preconditioners can lead to efficient and high-quality preconditioning matrices for some typical matrices from the real-world applications.

  相似文献   


12.
This is the second part of a trilogy on parallel solution of the linear elasticity problem. We consider the plain case of the problem with isotropic material, including discontinuous coefficients, and with homogeneous Dirichlet boundary condition. The discretized problem is solved by the preconditioned conjugate gradient (pcg) method. In the first part of the trilogy block‐diagonal preconditioners based on the separate displacement component part of the elasticity equations were analysed. The preconditioning systems were solved by the pcg‐method, i.e. inner iterations were performed. As preconditioner, we used modified incomplete factorization MIC(0), where possibly the element matrices were modified in order to give M‐matrices, i.e. in order to guarantee the existence of the MIC(0) factorization. In the present paper, the second part, full block incomplete factorization preconditioners are presented and analysed. In order to avoid inner/outer iterations we also study a variant of the block‐diagonal method and of the full block method, where the matrices of the inner systems are just replaced by their MIC(0)‐factors. A comparison is made between the various methods with respect to rate of convergence and work per unknown. The fastest methods are implemented by message passing utilizing the MPI system. In the third part of the trilogy, we will focus on the use of higher‐order finite elements. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, we consider domain decomposition preconditioners for a system of linear algebraic equations arising from the p‐version of the FEM. We analyse several multi‐level preconditioners for the Dirichlet problems in the sub‐domains in two and three dimensions. It is proved that the condition number of the preconditioned system is bounded by a constant independent of the polynomial degree. Relations between the p‐version of the FEM and the h‐version are helpful in the interpretations of the results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Multiscale or multiphysics problems often involve coupling of partial differential equations posed on domains of different dimensionality. In this work, we consider a simplified model problem of a 3d‐1d coupling and the main objective is to construct algorithms that may utilize standard multilevel algorithms for the 3d domain, which has the dominating computational complexity. Preconditioning for a system of two elliptic problems posed, respectively, in a three‐dimensional domain and an embedded one dimensional curve and coupled by the trace constraint is discussed. Investigating numerically the properties of the well‐defined discrete trace operator, it is found that negative fractional Sobolev norms are suitable preconditioners for the Schur complement of the system. The norms are employed to construct a robust block diagonal preconditioner for the coupled problem.  相似文献   

15.
This paper deals with fast and reliable numerical solution methods for the incompressible non-Newtonian Navier-Stokes equations. To handle the nonlinearity of the governing equations, the Picard and Newton methods are used to linearize these coupled partial differential equations. For space discretization we use the finite element method and utilize the two-by-two block structure of the matrices in the arising algebraic systems of equations. The Krylov subspace iterative methods are chosen to solve the linearized discrete systems and the development of computationally and numerically efficient preconditioners for the two-by-two block matrices is the main concern in this paper. In non-Newtonian flows, the viscosity is not constant and its variation is an important factor that affects the performance of some already known preconditioning techniques. In this paper we examine the performance of several preconditioners for variable viscosity applications, and improve them further to be robust with respect to variations in viscosity.  相似文献   

16.
This survey paper is based on three talks given by the second author at the London Mathematical Society Durham Symposium on Computational Linear Algebra for Partial Differential Equations in the summer of 2008. The main focus will be on an abstract approach to the construction of preconditioners for symmetric linear systems in a Hilbert space setting. Typical examples that are covered by this theory are systems of partial differential equations which correspond to saddle point problems. We will argue that the mapping properties of the coefficient operators suggest that block diagonal preconditioners are natural choices for these systems. To illustrate our approach a number of examples will be considered. In particular, parameter‐dependent systems arising in areas like incompressible flow, linear elasticity, and optimal control theory will be studied. The paper contains analysis of several models which have previously been discussed in the literature. However, here each example is discussed with reference to a more unified abstract approach. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
We are concerned with the numerical solution of partial differential equations (PDEs) in two spatial dimensions discretized via Hermite collocation. To efficiently solve the resulting systems of linear algebraic equations, we choose a Krylov subspace method. We implement two such methods: Bi‐CGSTAB [1] and GMRES [2]. In addition, we utilize two different preconditioners: one based on the Gauss–Seidel method with a block red‐black ordering (RBGS); the other based upon a block incomplete LU factorization (ILU). Our results suggest that, at least in the context of Hermite collocation, the RBGS preconditioner is superior to the ILU preconditioner and that the Bi‐CGSTAB method is superior to GMRES. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17:120–136, 2001  相似文献   

18.
Sabine Le Borne 《PAMM》2006,6(1):747-748
For saddle point problems in fluid dynamics, many preconditioners in the literature exploit the block structure of the problem to construct block diagonal or block triangular preconditioners. The performance of such preconditioners depends on whether fast, approximate solvers for the linear systems on the block diagonal as well as for the Schur complement are available. We will construct these efficient preconditioners using hierarchical matrix techniques in which fully populated matrices are approximated by blockwise low rank approximations. We will compare such block preconditioners with those obtained through a completely different approach where the given block structure is not used but a domain-decomposition based ℋ︁-LU factorization is constructed for the complete system matrix. Preconditioners resulting from these two approaches will be discussed and compared through numerical results. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
We present the recurrence formulas for computing the approximate inverse factors of tridiagonal and pentadiagonal matrices using bordering technique. Resulting algorithms are used to approximate the inverse of pivot blocks needed for constructing block ILU preconditioners for solving the block tridiagonal linear systems, arising from discretization of partial differential equations. Resulting preconditioners are suitable for parallel implementation. Comparison with other methods are also included.  相似文献   

20.
We construct, analyze, and implement SSOR‐like preconditioners for non‐Hermitian positive definite system of linear equations when its coefficient matrix possesses either a dominant Hermitian part or a dominant skew‐Hermitian part. We derive tight bounds for eigenvalues of the preconditioned matrices and obtain convergence rates of the corresponding SSOR‐like iteration methods as well as the corresponding preconditioned GMRES iteration methods. Numerical implementations show that Krylov subspace iteration methods such as GMRES, when accelerated by the SSOR‐like preconditioners, are efficient solvers for these classes of non‐Hermitian positive definite linear systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号