首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As the most successful commercialized thermoplastic vulcanizates (TPVs), polypropylene (PP)/ethylene propylene rubber (EPDM) TPVs exhibit poor oil resistance. In this work, we prepared PP/EPDM/butadiene acrylonitrile rubber (NBR) ternary TPVs with good oil resistance using core‐shell dynamic vulcanization. According to the theoretical analysis of the spreading coefficient and the transmission electron microscopy results, the rubber phases exhibited a special core‐shell structure, in which the cross‐linkedNBR‐core was encapsulated by the EPDM‐shell. The core‐shell structure effectively improved the interfacial compatibility between PP and NBR phase as the EPDM‐shell could avoid the direct contact of them, thus improving the mechanical properties of the TPVs. For example, the PP/EPDM/NBR (40/30/30) ternary TPV showed enhanced tensile strength of 12.57 MPa, compared with 10.71 MPa of PP/EPDM (40/60) TPV and 11.11 MPa of PP/NBR (40/60) TPV, respectively. Moreover, the oil resistance of the TPVs was also improved. Compared with PP/EPDM TPV, the change rates in mass, volume, tensile strength and elongation at break of PP/EPDM/NBR TPV after oil immersion decreased by 42.18%, 48.69%, 52.68% and 28.77%, respectively.  相似文献   

2.
Reactive melt blends of an ethylene‐propylene‐diene terpolymer (EPDM) based thermoplastic elastomer (TPE), maleic anhydride grafted polypropylene (MAH‐g‐PP), and nylon 6 were prepared in a single screw extruder and evaluated in terms of morphological, rheological, thermal, dynamic mechanical, and mechanical properties of the blends. It was found that MAH‐g‐PP‐co‐nylon 6 copolymers were in situ formed and acted as effective compatibilizers for polypropylene (PP) and nylon 6. Phase separation of PP and EPDM in TPE increased with the addition and increasing amount of MAH‐g‐PP and nylon 6, leading to decreased glass transition temperature (Tg) of TPE and increased crystalline melting temperature (Tm) of PP. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
Positron annihilation lifetime measurements were performed on pure polypropylene (PP), ethylene-propylene-diene monomer (EPDM) rubber, and their blends PP/EPDM with a series of EPDM volume fraction ϕ (= 10–40%). A numerical Laplace inversion technique (i.e., CONTIN algorithm), was employed to obtain the probability distribution functions (PDF) of free-volume radius. We observed that, first, the average free-volume radius in PP/EPDM blends is generally same as that in PP and is much smaller than that in EPDM. Second, the standard deviation σR or the width of the free-volume radius PDF in the blend decreases with ϕ in the region of ϕ = 10ndash;30%, and it increases when ϕ increases from 30% to 40%. The difference in the σR of the blend and the calculated value σc R according to the simple-mixing rule of PP and EPDM is interpreted by the existence of the two-phase interaction (i.e., the residual thermal pressure and shear stress between PP and EPDM phases in the PP/EPDM blends). The correlation between σR, which indicates the interaction of two phases, and the impact strength of PP/EPDM blends was found and discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
A modified nano-calcium carbonate (R-CCR) was prepared by coating a layer of unsaturated hydroxylfatty acid on the surface of CCR powders using a solid state method; the latter were commercial nano-CaCO3 modified with stearic acid. FTIR studies indicate that the modifier is combined on the surface of CaCO3. PP/EPDM/nano-CaCO3 ternary composites were prepared by a melt-mixing method. SEM and TEM were utilized to examine the morphology of the composites. The tensile fractured surface of PP/EPDM/R-CCR showed a fibroid morphology and large-scale yield deformation. The impact fractured surface showed that the amount of cavities in the PP/EPDM/R-CCR system was increased, however their size diminished obviously. R-CCR particles were dispersed uniformly in the PP matrix, and their compatibility was distinctly improved as compared to CCR when the amount of R-CCR was 15 h−1. The tensile strength remained nearly constant (reduced from 27.6 MPa to 27.5 MPa), while the impact strength increased from 9.6 kJ/m2 to 15.4 kJ/m2 as CCR was replaced by R-CCR. Meanwhile, the bending strength and bending modulus also increased correspondingly. Furthermore, the impact strength of PP/EPDM/R-CCR was maintained at a high level (15.4 kJ/m2), which was more than the sum of that of PP/EPDM and PP/R-CCR (6.6 kJ/m2 and 6.1 kJ/m2 respectively). This indicates that the R-CCR and EPDM have a significant synergistic toughening effect on PP while maintaining the strength and modulus of virgin PP. Both the storage modulus G′ and loss modulus G″ of PP/EPDM and PP/EPDM/R-CCR composites increase with increasing frequency, but the values of G′ and G″ of the tertiary composite are relatively higher than those of the binary system. The loss factor and viscosity decrease with increasing frequency, but there is little difference between tertiary and binary composites. The apparent viscosity η of the tertiary system containing R-CCR is lower than that of the tertiary system containing CCR and virgin PP. The viscosity of the composites sig-nificantly decreases with increasing shear rate. The mea-sured mechanical properties of the composites indicate that replacing CCR with R-CCR for binary composites could simultaneously enhance the toughness and strength of PP. __________ Translated from Acta Polymerica Sinica, 2008, 4 (in Chinese)  相似文献   

5.
Physically and dynamically vulcanized (TPV) mixtures of polypropylene (PP) and ethylene propylene diene terpolymer (EPDM) are prepared by extrusion in order to improve the impact resistance of PP. To enhance the chemical compatibility and provide better interaction between the PP and EPDM in the physical mixtures, both polymers are modified with maleic anhydride (MAH) in solution using xylene as solvent and dicumyl peroxide (DCP) as initiator. The qualitative and quantitative determination of the degree of grafting is study by Fourier Transform Infrared Spectroscopy (FTIR) and varying the amount of DCP and/or amount of MAH in order to determine the optimum amounts to obtain the highest degree of grafting. The effect of the relation of PP/EPDM, the amount of reinforcement filler and mix rate are studied for modified polymer mixtures (PP-g-MAH/EPDM-g-MAH). For the TPV of PP/EPDM the effects of amount and triallylisocyanurate (TAC) as coupling agent in presence of different amounts of DCP are studied. The physical mixtures of modified polymers prepared with a PP/EPDM ratio of 80/20 and the TPVs blends prepared with a PP/EPDM ratio of 70/30 and containing 15% filler at 60 rpm show the highest impact resistance. The impact resistance, melt flow index and hardness of the different mixtures are measured to determine their possible applications to prepare front panels and bumpers for automobiles by injection molding.  相似文献   

6.
The effect of oil and curing agent content on the mechanical behavior of thermoplastic vulcanizates, based on a polypropylene (PP) and ethylene‐propylene‐diene copolymer (EPDM), was investigated. Mechanical properties such as Young's modulus, stress at 100% elongation and ultimate stress were investigated as a function of blends' composition and phase morphology. Experimental studies show that the Young's modulus of the vulcanizates depends on both PP/EPDM ratio and oil content in the blends; both ultimate strength and stress at 100% elongation increase with curing agent content.  相似文献   

7.
Morphology development and phase inversion were investigated during dynamic vulcanisation of ethylene–propylene–diene terpolymer (EPDM)/polypropylene (PP) blends. The effects of viscosity ratio and cross-linking reactions were also addressed. EPDM/PP blends were dynamically vulcanised in a Haake batch mixer using resole and SnCl2 as cross-linking agents. The morphology development and cross-linking degree with reaction time were followed by morphology analysis (SEM and TEM) and measurement of EPDM gel content, respectively. For the same reaction time, it was found that the EPDM gel content decreased when the low-molecular-weight EPDM was used. As a result, the morphological development was delayed and the phase-inversion point was shifted to higher reaction times, allowing us to monitor morphological development during a thermoplastic vulcanisate (TPV) preparation. Using the low-molecular-weight EPDM and increasing the PP viscosity accelerated the morphological development, shifting phase-inversion to lower reaction times. While blend composition influenced final TPV morphology, it had a minor effect on the mechanism of morphological development. A correlation between cross-linking degree and morphology development was established. The results obtained allowed to propose a mechanism of morphology development during dynamic vulcanisation of the EPDM/PP blends, including phase inversion.  相似文献   

8.
An overview will be given on thermoplastic vulcanisates (TPVs). Like other thermoplastic elastomers, TPVs combine the elastic and mechanical properties of thermoset cross-linked rubbers with the melt processability of thermoplastics. Emphasis will be on general-purpose TPVs, based on resol-cross-linked EPDM/PP/oil blends. The following recent scientific developments will be discussed in detail: resol cross-linking chemistry, extruder dynamic vulcanisation, TPV morphology, oil distribution, TPV elasticity model and TPV rheology. A series of scientific questions and technological problems, which are challenging future TPV developments, will be put forward at the end.  相似文献   

9.
To study the brittle–ductile transition (BDT) of polypropylene (PP)/ethylene–propylene–diene monomer (EPDM) blends induced by size, temperature, and time, the toughness of the PP/EPDM blends was investigated over wide ranges of EPDM content, temperature, and strain rate. The toughness of the blends was determined from the tensile fracture energy of the side‐edge notched samples. The concept of interparticle distance (ID) was introduced into this study to probe the size effect on the BDT of PP/EPDM blends, whereas the effect of time corresponded to that of strain rate. The BDT induced by size, temperature, and time was observed in the fracture energy versus ID, temperature, and strain rate. The critical BDT temperatures for various EPDM contents at different initial strain rates were obtained from these transitions. The critical interparticle distance (IDc) increased nonlinearly with increasing temperature, and when the initial strain rate was lower, the IDc was larger. Moreover, the variation of the reciprocal of the initial strain rate with the reciprocal of temperature followed different straight lines for various EPDM contents. These straight lines were with the same slope. Furthermore, a diagram at critical BDT points in three dimensions (ID, T, and initial strain rate) was given for the PP/EPDM blends. The brittle and ductile zones are clearly shown in this diagram. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1433–1440, 2004  相似文献   

10.
The fragmentation and dispersion in molten polypropylene (PP) of several pre-crosslinked and plasticized ethylene–propylene–diene terpolymer (EPDM) networks was studied. Thus, the morphologies and mechanical properties of PP/EPDM blends having similar compositions but made from either un-crosslinked, pre-crosslinked or dynamic-crosslinked EPDMs were compared. The results first highlight the importance of the gel fraction of the pre-crosslinked EPDMs, as well as the impact of the thermoplastic matrix proportion on the quality of the dispersion of such networks. As a result, pre-crosslinked EPDM having a gel fraction below gEPDM = 0.7 can be finely and homogeneously fragmented and dispersed in presence of PP. It can be then admitted a collision–coalescence–separation type erosion mechanism of the EPDM domains. Nevertheless, contrarily to some theoretical model expectations, a partial fragmentation of the chemical networks was always observed even at very high crosslink density (gEPDM > 0.7). Finally, the blends crosslinked under shearing (dynamic-crosslinked) showed a clear mechanical property synergy due to their fine and homogeneous morphology coupled with the full crosslinking of the elastomer. In the end, these results brought significant information on TPV morphology stabilization and their related mechanical properties.  相似文献   

11.
In this study, relatively large amounts of polypropylene (PP), ethylene‐propylene‐diene (EPDM), and multi‐walled carbon nanotube (MWCNT) were melt‐mixed with and without DCP. Dynamically vulcanized PP/EPDM (TPV)/MWCNT nanocomposites were prepared by two methods: the MWCNTs were added either before or after the dynamic vulcanization of the blends. The effects of composition, rotor speed, and dynamic vulcanization on their surface resistivity were investigated. The surface resistivity of uncross‐linked PP/EPDM/MWCNT nanocomposites increases with increasing the content of EPDM. At PP/EPDM (70/30 wt%) nanocomposite with 1.5 phr MWCNT, slightly lower surface resistivity is obtained by increasing the rotor speed during mixing. However, for PP/EPDM (50/50 wt%) and PP/EPDM (30/70 wt%) nanocomposites, surface resistivity decreases with increasing the rotor speed from 30 to 60 rpm. But further increase in rotor speed (90 rpm) leads to an increase of surface resistivity. When the MWCNTs were added after the dynamic vulcanization of the blends, the surface resistivity of TPV70/MWCNTnanocomposite is lower than that of uncross‐linked PP/EPDM/MWCNT nanocomposite. However, when the MWCNTs were added before the dynamic vulcanization of the blends, the surface resistivity of TPV70/MWCNT nanocomposite is >1012 Ω/square. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Summary The use of thermal field-flow fractionation (ThFFF) with multi-angle light scattering (MALS) for the rapid detection of compositional heterogeneity in random copolymers is demonstrated. Soret coefficients were directly calculated from the ThFFF retention times while the MALS detector provided the polymer's radius of gyration (R g) distribution. FromR g, the diffusion coefficient (D) could be calculated and this allowed, in combination with the Soret coefficient, the calculation of the thermal diffusion coefficient (D T). It was shown that theD T distribution can serve as a measure for the chemical composition distribution of random styrene acrylonitrile copolymers. Comparison of ThFFF-MALS results with literature data from ThFFF-hydrodynamic chromatography (HDC) cross-fractionation experiments showed a fair agreement.  相似文献   

13.
The effect of the incorporation of an amorphous immiscible polymer (ethylene-propylene-diene- terpolymer) on the PP crystallization kinetics and thermodynamics is investigated by thermal analysis. The results of the investigation have shown that EPDM acts as a nucleant agent. A marked decrease of the half time of PP crystallization, τ1/2 , as well as a sensible increase of the overall crystallization rate, K n , has been observed in the presence of EPDM. Moreover, at any crystallization temperature, a minimum of τ1/2 , is obtained at 25% EPDM content in the blend. The Avrami model has been successfully applied to describe the crystallization kinetics of the blend. The kinetic curves obtained under non-isothermal conditions confirm the results obtained under isothermal conditions and demonstrate the nucleant action of the EPDM phase on the PP crystallization. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The liquid–liquid phase‐separation (LLPS) behavior of poly(n‐methyl methacrylimide)/poly(vinylidene fluoride) (PMMI/PVDF) blend was studied by using small‐angle laser light scattering (SALLS) and phase contrast microscopy (PCM). The cloud point (Tc) of PMMI/PVDF blend was obtained using SALLS at the heating rate of 1 °C min?1 and it was found that PMMI/PVDF exhibited a low critical solution temperature (LCST) behavior similar to that of PMMA/PVDF. Moreover, Tc of PMMI/PVDF is higher than its melting temperature (Tm) and a large temperature gap between Tc and Tm exists. At the early phase‐separation stage, the apparent diffusion coefficient (Dapp) and the product (2Mk) of the molecules mobility coefficient (M) and the energy gradient coefficient (k) arising from contributions of composition gradient to the energy for PMMI/PVDF (50/50 wt) blend were calculated on the basis of linearized Cahn‐Hilliard‐Cook theory. The kinetic results showed that LLPS of PMMI/PVDF blends followed the spinodal decomposition (SD) mechanism. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1923–1931, 2008  相似文献   

15.
The effects of the dynamic polymerization method and temperature on the molecular aggregation structure and the mechanical and melting properties of thermoplastic polyurethanes (TPUs) were successfully clarified. TPUs were prepared from poly (ethylene adipate) glycol (Mn = 2074), 4,4′‐diphenylmethane diisocyanate and 1,4‐butanediol by the one‐shot (OS) and the prepolymer (PP) methods in bulk at dynamic polymerization temperatures ranging from 140 to 230 °C. Glass‐transition temperatures (Tgs) of the soft segment and melting points (Tms) of the hard segment domains of OS‐TPUs increased and decreased, respectively, with increasing polymerization temperatures, but those of PP‐TPUs were almost independent of the polymerization temperature. Tgs of the soft segment and Tms of the hard segment domains of these TPUs polymerized above 190 °C were almost the same regardless of the polymerization method. Solid‐state nuclear magnetic resonance spectroscopy (NMR) analyses of OS‐ and PP‐TPUs showed that the relative proton content of fast decay components, which corresponds to the hard segment domains, in these TPUs decreased with increasing polymerization temperatures. These results clearly show that the degree of microphase separation becomes weaker with increasing polymerization temperatures. The temperature dependence of dynamic storage modulus and loss tangent of OS‐TPUs coincided with those of PP‐TPUs at polymerization temperature above 190 °C. The apparent shear viscosity for OS‐ and PP‐TPUs polymerized above 190 °C approached a Newtonian behavior at low shear rates regardless of the polymerization method. These results indicate that TPUs polymerized at higher temperatures form almost the same molecular aggregation structures irrespective of the dynamic polymerization method. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 800–814, 2007  相似文献   

16.
The temperature and pressure dependences of 35Cl nuclear quadrupole resonance (NQR) frequency and spin–lattice relaxation time (T1) were investigated for 1‐chloro‐2,4‐dinitrobenzene and 1,2‐dichloro‐3‐nitrobenzene. T1 was measured in the temperature range 77–300 K. Furthermore, the NQR frequency (ν) and T1 for these compounds were measured as a function of pressure up to 5.1 kbar at 300 K. Relaxation was found to be due to the torsional motion of the molecule and the reorientation motion of the nitro group. By analysing the temperature dependence of T1, the activation energy for the reorientation motion of the nitro group was obtained. The temperature dependence of the average torsional lifetimes of the molecules and the transition probabilities W1 and W2 for the Δm = ±1 and Δm = ±2 transitions, were also obtained. Both compounds showed a non‐linear variation of NQR frequency with pressure. The pressure coefficients were observed to be positive. A thermodynamic analysis of the data was carried out to determine the constant‐volume temperature coefficients of the NQR frequency. The spin–lattice relaxation time T1 for both the compounds was found to be weakly dependent on pressure, showing that the relaxation is mainly due to the torsional motions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
Non-isothermal crystallization kinetics of polypropylene (PP), m-isopropenyl-α,α-dimethyl-benzyl isocyanate grafted PP (PP-g-m-TMI), and styrene(St), as comonomer, together with m-TMI grafted PP (PP-g-(St-m-TMI)) was investigated by using differential scanning calorimetry (DSC) under different cooling rates. The crystallization rates of all samples increased with increasing cooling rate. The relation of the half time of crystallization (t 1/2) of the three samples, t 1/2(PP-g-(St-m-TMI)) < t 1/2(PP-g-m-TMI) < t 1/2(PP), implying the introduction of St could effectively improve the degree of grafting of m-TMI, resulting in crystallization temperature increased, and the crystallization rate was the fastest. Three methods, namely, the Avrami, the Ozawa, and the Mo, were used to describe the crystallization process of the three samples under non-isothermal conditions. The Avrami and Ozawa neglected the secondary crystallization that follows primary crystallization. The Mo method can successfully describe the overall non-isothermal crystallization process of all the samples. It has been found that the F(T)(PP-g-(St-m-TMI)) < F(T)(PP-g-m-TMI) < F(T)(PP), also meaning that the crystallization rate of PP-g-(St-m-TMI) and PP-g-m-TMI were faster than that of PP. The activation energy (ΔE) for non-isothermal crystallization of all samples was determined by using the Kissinger method. The result showed that the lower value of ΔE for crystallization obtained for PP-g-m -TMI and PP-g-(St-m-TMI) confirmed the nucleating effect of St and m-TMI on crystallization of PP.  相似文献   

18.
于建 《高分子科学》2011,29(3):308-317
An aryl dicarboxylic acid amide compound TMB-5 is an efficientβ-form nucleating agent for isotactic polypropylene(iPP).Because of the solubility of TMB-5,superstructure and morphology of iPP crystals changed with melting conditions.Effects of final heating temperature(T_f)on heterogeneous nucleation of iPP/TMB-5 were investigated.It was discovered that the crystallization temperature increased with decreasing T_f value.The optical microscopic images indicated that when TMB-5 partially dissolved in iPP melt,the remaining(non-dissolved)TMB-5 facilitated the recrystallization of dissolved nucleating agent from the melt,which promoted crystallization.Complete solubility of nucleating agent caused the decreasing efficiency.TMB-5 recrystallized in the form of tiny needles,whose aggregates induced dendritic iPP crystals.  相似文献   

19.
A series of new modified epoxy resin (EP) cured products were prepared from epoxidized soybean oil and commercial epoxy resin, with methyl nadic anhydride as curing agent and 1-methylimidazole as promoting agent. The thermal properties of the resins were characterized by DMA and TG; DSC was used to determine the curing process. Fourier transform infrared spectroscopy was utilized to investigate their molecular structures and scanning electron microscopy was used to observe the micro morphology of their impact fracture surfaces. Tensile and impact testing was employed to characterize the mechanical properties of the cured products. The combination of commercial EP with 20 wt% ESO resulted in a bioresin with the optimum set of properties: 130.5 °C T g, 396.9 °C T 50 %, 74.89 MPa tensile strength, and 48.86 kJ m?2 impact resistance.  相似文献   

20.
《Fluid Phase Equilibria》1999,155(1):75-83
The second virial coefficients B2 of Lennard–Jones chain fluids were calculated through Monte Carlo integration as a function of chain length m (up to 48 segments) and temperature. We found that at a fixed temperature the second virial coefficient decreases with chain length. At low temperatures, the virial coefficient changes sign from positive to negative as m increases. The simulation data also provide an estimate for the theta temperature TΘ at which the attractive and repulsive interactions cancel each other for dilute solutions. It is found that the theta temperature TΘ for Lennard–Jones chains with m>32 is 4.65 independent of chain length m. A comparison of simulated values of B2 with those evaluated from two different perturbation theories for chain fluid shows that these approximate theories underestimate the second virial coefficients of Lennard–Jones chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号