首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We consider an inverse boundary value problem for the heat equation ? t u = div (γ? x u) in (0, T) × Ω, u = f on (0, T) × ?Ω, u| t=0 = u 0, in a bounded domain Ω ? ? n , n ≥ 2, where the heat conductivity γ(t, x) is piecewise constant and the surface of discontinuity depends on time: γ(t, x) = k 2 (x ∈ D(t)), γ(t, x) = 1 (x ∈ Ω?D(t)). Fix a direction e* ∈ 𝕊 n?1 arbitrarily. Assuming that ?D(t) is strictly convex for 0 ≤ t ≤ T, we show that k and sup {ex; x ∈ D(t)} (0 ≤ t ≤ T), in particular D(t) itself, are determined from the Dirichlet-to-Neumann map : f → ?ν u(t, x)|(0, T)×?Ω. The knowledge of the initial data u 0 is not used in the proof. If we know min0≤tT (sup xD(t) x·e*), we have the same conclusion from the local Dirichlet-to-Neumann map. Numerical examples of stationary and moving circles inside the unit disk are shown. The results have applications to nondestructive testing. Consider a physical body consisting of homogeneous material with constant heat conductivity except for a moving inclusion with different conductivity. Then the location and shape of the inclusion can be monitored from temperature and heat flux measurements performed at the boundary of the body. Such a situation appears for example in blast furnaces used in ironmaking.  相似文献   

2.
An approximation of function u(x) as a Taylor series expansion about a point x0 at M points xi, ~ i = 1,2,…,M is used where xi are arbitrary‐spaced. This approximation is a linear system for the derivatives u(k) with an arbitrary accuracy. An analytical expression for the inverse matrix A ?1 where A = [Aik] = (xi ? x0)k is found. A finite‐difference approximation of derivatives u(k) of a given function u(x) at point x0 is derived in terms of the values u(xi). © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

3.
An inverse polynomial method of determining the unknown leading coefficient k=k(x) of the linear Sturm–Liouville operator Au=−(k(x)u(x))+q(x)u(x), x(0,1), is presented. As an additional condition only two measured data at the boundary (x=0,x=1) are used. In absence of a singular point (u(x)≠0,u(x)≠0,x[0,1]) the inverse problem is classified as a well-conditioned . If there exists at least one singular point, then the inverse problem is classified as moderately ill-conditioned (u(x0)=0,x0(0,1);u(x)≠0,xx0;u(x)≠0,x[0,1]) and severely ill-conditioned (u(x0)=u(x0)=0,x0(0,1);u(x)≠0,u(x)≠0,xx0). For each of the cases direct problem solution is approximated by corresponding polynomials and the inverse problem is reformulated as a Cauchy problem for to the first order differential equation with respect the unknown function k=k(x). An approximate analytical solution of the each Cauchy problems are derived in explicit form. Numerical simulations all the above cases are given for noise free and noisy data. An accuracy of the presented approach is demonstrated on numerical test solutions.  相似文献   

4.
This article presents a semigroup approach for the mathematical analysis of the inverse coefficient problems of identifying the unknown coefficient k(u(x,t)) in the quasi‐linear parabolic equation ut(x,t)=(k(u(x,t))ux(x,t))x, with Dirichlet boundary conditions u(0,t)=ψ0, u(1,t)=ψ1. The main purpose of this paper is to investigate the distinguishability of the input–output mappings Φ[?]:?? →C1[0,T], Ψ[?]:??→C1[0,T] via semigroup theory. In this paper, it is shown that if the null space of the semigroup T(t) consists of only zero function, then the input–output mappings Φ[?] and Ψ[?] have the distinguishability property. It is also shown that the types of the boundary conditions and the region on which the problem is defined play an important role in the distinguishability property of these mappings. Moreover, under the light of measured output data (boundary observations) f(t):=k(u(0,t))ux(0,t) or/and h(t):=k(u(1,t))ux(1,t), the values k0) and k1) of the unknown diffusion coefficient k(u(x,t)) at (x,t)=(0,0) and (x,t)=(1,0), respectively, can be determined explicitly. In addition to these, the values ku0) and ku1) of the unknown coefficient k(u(x,t)) at (x,t)=(0,0) and (x,t)=(1,0), respectively, are also determined via the input data. Furthermore, it is shown that measured output data f(t) and h(t) can be determined analytically by an integral representation. Hence the input–output mappings Φ[?]:??→ C1[0,T], Ψ[?]:??→C1[0,T] are given explicitly in terms of the semigroup. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
The problem of determining the pair w:={F(x,t);T0(t)} of source terms in the parabolic equation ut=(k(x)ux)x+F(x,t) and Robin boundary condition −k(l)ux(l,t)=v[u(l,t)−T0(t)] from the measured final data μT(x)=u(x,T) is formulated. It is proved that both components of the Fréchet gradient of the cost functional can be found via the same solution of the adjoint parabolic problem. Lipschitz continuity of the gradient is derived. The obtained results permit one to prove existence of a quasi-solution of the considered inverse problem, as well as to construct a monotone iteration scheme based on a gradient method.  相似文献   

6.
7.
We consider a material with thermal memory occupying a bounded region Ω with boundary Γ. The evolution of the temperature u(t,x) is described by an integrodifferential parabolic equation containing a heat source of the form f(t)z0(x). We formulate an initial and boundary value control problem based on a feedback device located on Γ and prescribed by means of a quite general memory operator. Assuming both u and the source factor f are unknown, we study the corresponding inverse and control problem on account of an additional information. We prove a result of existence and uniqueness of the solution (u,f). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Let k(y) > 0, 𝓁(y) > 0 for y > 0, k(0) = 𝓁(0) = 0 and limy → 0k(y)/𝓁(y) exists; then the equation L(u) ≔ k(y)uxx – ∂y(𝓁(y)uy) + a(x, y)ux = f(x, y, u) is strictly hyperbolic for y > 0 and its order degenerates on the line y = 0. Consider the boundary value problem Lu = f(x, y, u) in G, u|AC = 0, where G is a simply connected domain in ℝ2 with piecewise smooth boundary ∂G = ABACBC; AB = {(x, 0) : 0 ≤ x ≤ 1}, AC : x = F(y) = ∫y0(k(t)/𝓁(t))1/2dt and BC : x = 1 – F(y) are characteristic curves. Existence of generalized solution is obtained by a finite element method, provided f(x, y, u) satisfies Carathéodory condition and |f(x, y, u)| ≤ Q(x, y) + b|u| with QL2(G), b = const > 0. It is shown also that each generalized solution is a strong solution, and that fact is used to prove uniqueness under the additional assumption |f(x, y, u1) – f(x, y, u2| ≤ C|u1u2|, where C = const > 0.  相似文献   

9.
The problem of determining an unknown term k(u) in the equation k(u)ut=(k(u)ux)x is considered in this paper. Applying Tikhonov's regularization approach, we develop a procedure to find an approximate stable solution to the unknown coefficient from the overspecified data.  相似文献   

10.
In this paper, we consider an inverse source problem of identification of F(t) function in the linear parabolic equation ut = uxx + F(t) and u0(x) function as the initial condition from the measured final data and local boundary data. Based on the optimal control framework by Green's function, we construct Fréchet derivative of Tikhonov functional. The stability of the minimizer is established from the necessary condition. The CG algorithm based on the Fréchet derivative is applied to the inverse problem, and results are presented for a test example. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Let u(x) be a function analytic in some neighborhood D about the origin, $ \mathcal{D} Let u(x) be a function analytic in some neighborhood D about the origin, ⊂ ℝ n . We study the representation of this function in the form of a series u(x) = u 0(x) + |x|2 u 1(x) + |x|4 u 2(x) + …, where u k (x) are functions harmonic in . This representation is a generalization of the well-known Almansi formula. Original Russian Text ? V. V. Karachik, 2007, published in Matematicheskie Trudy, 2007, Vol. 10, No. 2, pp. 142–162.  相似文献   

12.
The boundary value problemc t=c xxc yy+q(t,x)c with {fx349-1} was solved by Colton [1] forq analytic int. The solution may be used for mapping solutions of the heat equation into solutions ofu t=u xx+q(t,x)u. Solutions (of the boundary value problem) no longer exist ifq is not analytic int. Erica and Ludwig Jesselson Professor of Theoretical Mathematics, The Weizmann Institute of Science. This research was partially supported by the Minerva Foundation.  相似文献   

13.
This paper presents a semigroup approach for the mathematical analysis of the inverse coefficient problems of identifying the unknown coefficient k(ux) in the inhomogenenous quasi‐linear parabolic equation ut(x, t)=(k(ux)ux(x, t))x +F(u), with the Dirichlet boundary conditions u(0, t)=ψ0, u(1, t)=ψ1 and source function F(u). The main purpose of this paper is to investigate the distinguishability of the input–output mappings Φ[·]:??→C1[0, T], Ψ[·]:??→C1[0, T] via semigroup theory. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A global Newton method for the zeros of cylinder functions   总被引:2,自引:0,他引:2  
Segura  Javier 《Numerical Algorithms》1998,18(3-4):259-276
The zeros of cylinder functions C u (x)=cos α, J u (x) - sin α, Y u(x) coincide with those of the ratios H u (x)=C u (x)/C u-1 (x) except, perhaps, at x = 0. We show monotonicity properties of H u(x) and f u (x) = x 2v-1 H u(x) and their derivatives for x > 0. We then build a Newton-Raphson iterative method based on the monotonic function f u(x) which is shown to be convergent, for any real values of u and α and any starting value x 0 > 0, to an sth positive root c ,s of C u (x) = 0, s being such that c ,s and x0 belong to the same interval (c u-1 ,s', c u -1 ,s'+1]. We also show applications of the method. In particular, taking advantage of the fact that the ratio H u (x) for first kind Bessel functions J u(x) can be evaluated by using a continued fraction, a very simple algorithm is built; it becomes especially efficient for low values of u and s and it allows the evaluation of the real zeros for arbitrary orders u, positive or negative. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
We consider a convolution-type integral equation u = k ? g(u) on the half line (???; a), a ?? ?, with kernel k(x) = x ???1, 0 < ??, and function g(u), continuous and nondecreasing, such that g(0) = 0 and 0 < g(u) for 0 < u. We concentrate on the uniqueness problem for this equation, and we prove that if ?? ?? (1, 4), then for any two nontrivial solutions u 1, u 2 there exists a constant c ?? ? such that u 2(x) = u 1(x +c), ??? < x. The results are obtained by applying Hilbert projective metrics.  相似文献   

16.
In this piece of work, we introduce a new idea and obtain stability interval for explicit difference schemes of O(k2+h2) for one, two and three space dimensional second-order hyperbolic equations utt=a(x,t)uxx+α(x,t)ux-2η2(x,t)u,utt=a(x,y,t)uxx+b(x,y,t)uyy+α(x,y,t)ux+β(x,y,t)uy-2η2(x,y,t)u, and utt=a(x,y,z,t)uxx+b(x,y,z,t)uyy+c(x,y,z,t)uzz+α(x,y,z,t)ux+β(x,y,z,t)uy+γ(x,y,z,t)uz-2η2(x,y,z,t)u,0<x,y,z<1,t>0 subject to appropriate initial and Dirichlet boundary conditions, where h>0 and k>0 are grid sizes in space and time coordinates, respectively. A new idea is also introduced to obtain explicit difference schemes of O(k2) in order to obtain numerical solution of u at first time step in a different manner.  相似文献   

17.
We study the inverse spectral problem for the Sturm–Liouville operator whose piecewise constant coefficient A(x) has discontinuity points x k , k=1,...,n, and jumps A k =A(x k +0)/A(x k -0). We show that if the discontinuity points x 1,...,x n are noncommensurable, i.e., none of their linear combinations with integer coefficients vanishes; then the spectral function of the operator determines all discontinuity points x k and jumps A k uniquely. We give an algorithm for finding x k and A k in finitely many steps.  相似文献   

18.
We study positive solutions u of the Yamabe equation cm Du-s( x) u+k( x) u\fracm+2m-2=0{c_{m} \Delta u-s\left( x\right) u+k\left( x\right) u^{\frac{m+2}{m-2}}=0}, when k(x) > 0, on manifolds supporting a Sobolev inequality. In particular we get uniform decay estimates at infinity for u which depend on the behaviour at infinity of k, s and the L Γ-norm of u, for some G 3 \tfrac2mm-2{\Gamma\geq\tfrac{2m}{m-2}}. The required integral control, in turn, is implied by further geometric conditions. Finally we give an application to conformal immersions into the sphere.  相似文献   

19.
Parabolic partial differential equations with overspecified data play a crucial role in applied mathematics and engineering, as they appear in various engineering models. In this work, the radial basis functions method is used for finding an unknown parameter p(t) in the inverse linear parabolic partial differential equation ut = uxx + p(t)u + φ, in [0,1] × (0,T], where u is unknown while the initial condition and boundary conditions are given. Also an additional condition ∫01k(x)u(x,t)dx = E(t), 0 ≤ tT, for known functions E(t), k(x), is given as the integral overspecification over the spatial domain. The main approach is using the radial basis functions method. In this technique the exact solution is found without any mesh generation on the domain of the problem. We also discuss on the case that the overspecified condition is in the form ∫0s(t) u(x,t)dx = E(t), 0 < tT, 0 < s(t) < 1, where s and E are known functions. Some illustrative examples are presented to show efficiency of the proposed method. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

20.
The inverse problem of finding the coefficients q(s) and p(s) in the equation u tt = a 2 u xx + q(u)u t ? p(u)u x is investigated. As overdetermination required in the inverse setting, two additional conditions are set: a boundary condition and a condition with a fixed value of the timelike variable. An iteration method for solving the inverse problem is proposed based on an equivalent system of integral equations of the second kind. A uniqueness theorem and an existence theorem in a small domain are proved for the inverse problem to substantiate the convergence of the algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号