首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We studied the influences of the compression cycles and the precompression pressure on the piezoresistivity of carbon black‐filled silicone rubber composite. The experimental results show that if the load pressure is less than the maximum pressure in the precompression cycle, the repeatability of the piezoresistivity is improved with the increase of the compression cycles. Once the load pressure surpasses the maximum pressure in the precompression cycle, the piezoresistivity of the composite is changed distinctly. The experimental phenomena are explained and described qualitatively by analyzing the changes in the composite resistance under the zero pressure and the slippage of the molecule chain during the compression. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1050–1061, 2008  相似文献   

2.
3.
The reinforcement and nonlinear viscoelastic behavior have been investigated for silica (SiO2) filled solution‐polymerized styrene butadiene rubber (SSBR). Experimental results reveal that the nonlinear viscoelastic behavior of the filled rubber is similar to that of unfilled SSBR, which is inconsistent with the general concept that this characteristic comes from the breakdown and reformation of the filler network. It is interesting that the curves of either dynamic storage modulus (G′) or loss tangent (tan δ) versus strain amplitude (γ) for the filled rubber can be superposed, respectively, on those for the unfilled one, suggesting that the primary mechanism for the Payne effect is mainly involved in the nature of the entanglement network in rubbery matrix. It is believed there exists a cooperation between the breakdown and reformation of the filler network and the molecular disentanglement, resulting in enhancing the Payne effect and improving the mechanical hysteresis at high strain amplitudes. Moreover, the vertical and the horizontal shift factors for constructing the master curves could be well understood on the basis of the reinforcement factor f(φ) and the strain amplification factor A(φ), respectively. The surface modification of SiO2 causes a decrease in f(φ), which is ascribed to weakeness of the filler–filler interaction and improvement of the filler dispersion. However, the surface nature of SiO2 hardly affects A(φ). © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2594‐2602, 2007  相似文献   

4.
Silicone rubber samples with gradually changing pore sizes within the range of 70–610 μm are produced using an improved spacer method. The samples are scanned using an X‐ray computed tomography to evaluate their graded structure as compared to uniform rubber. A compressive test reveals that graded porous silicone rubber has characteristic stress–strain curves whose slope changes within a specific strain range depending on the porous structure. Analysis results of local strain based on a digital image correlation of the graded porous silicone rubber under compression demonstrate that the characteristic stress–strain properties are caused by shifts in the main deformation region in the graded structure. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1033–1042  相似文献   

5.
Dielectric measurements were obtained on poly(propylene glycol) (molecular weight: 4000 Da) at pressures in excess of 1.2 GPa. The segmental (α process) and normal‐mode (α′ process) relaxations exhibited different pressure sensitivities of their relaxation strengths, as well as their relaxation times. Such results are contrary to previous reports, and (at least for the dielectric strength) can be ascribed to the capacity for intermolecular hydrogen‐bond formation in this material. With equation‐of‐state measurements, the relative contributions of volume and thermal energy to the α‐relaxation times were quantified. Similar to other H‐bonded liquids, temperature is the more dominant control variable, although the effect of volume is not negligible. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3047–3052, 2003  相似文献   

6.
Electrospun thermoplastic polyurethane (TPU) nanofibers are known to contract considerably (~40%) on heating up to ~90 °C. This study investigates this thermomechanical behavior and the TPU shape memory capabilities. The shape memory effect was first studied in TPU films as a model system by applying classical thermomechanical cycles (programming and recovery). The films were able to fix the applied deformation during long‐term storage at room temperature, well above the material's calorimetric glass transition temperature and in the absence of a percolated structure of hard domains. Structural analysis (Fourier transform infrared, differential scanning calorimeter, and dynamic mechanical analysis) revealed broad thermal transitions indicating the presence of a mixed phase of hard segments dispersed in the soft segment matrix. Using a linear viscoelastic model together with time–temperature superposition, the shape memory effect was attributed to the thermoviscoelastic properties of TPU. In particular, the mixed phase was found to give rise to a very broad relaxation spectrum dominated by long relaxation times, which explains the suppression of strain recovery at room temperature. Finally, the electrospinning process was examined and was found to be similar to a programming cycle characterized by the strong elongation flow accompanied by massive solvent evaporation, whereas the contraction effect was interpreted as the recovery phase in a shape memory perspective. Thus, the contraction of electrospun TPU mats may be considered to be an electrospinning‐induced shape memory effect. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1590–1602  相似文献   

7.
Sorption and diffusion of benzene and methyl‐substituted benzenes were investigated through epoxidized natural rubber (ENR) reinforced with four types of carbon black: superabrasion furnace (SAF), intermediate superabrasion furnace (ISAF), high‐abrasion furnace (HAF), and semireinforcing furnace (SRF). Kraus equation has been used to investigate the extent of reinforcement for the different types of carbon black used in the experiments. Effect of the type and concentration of the carbon black on solvent uptake and mechanism of diffusion were studied in detail. The rate constant for diffusion of the solvents in epoxidized natural rubber vulcanizate based on different carbon black type, and loading was investigated. Diffusion constant was found to decrease with increase in the degree of reinforcement. The interaction constant values were experimentally determined. The sorption data were used to determine the activation energy for the diffusion process and the enthalpy and entropy of the sorption process. The experimental results were compared with theoretical predictions. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 415–427, 1999  相似文献   

8.
For the production of polymer‐based conducting composites serving as positive temperature coefficient (PTC) materials with lower room‐temperature resistivity and sufficiently high PTC intensity, carbon black has been pretreated with acrylic acid and some initiator and then melt‐mixed with low‐density polyethylene. Because of the in situ formation of covalent bonding at the filler/matrix interface, the distribution status and thermally induced displacement habit of the conductive fillers have changed accordingly. As a result, the electrical performance of the composites can be tailored as desired. The amount of acrylic acid and the treatment sequence of carbon black exert an important influence on the effectiveness of the modification. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 127–134, 2003  相似文献   

9.
Developing conductive networks in a polymer matrix with a low percolation threshold and excellent mechanical properties is desired for soft electronics applications. In this work, natural rubber (NR) functionalized with poly(methyl methacrylate) (PMMA) was prepared for strong interfacial interactions with multiwalled carbon nanotubes (MWCNT), resulting in excellent performance of the natural rubber nanocomposites. The MWCNT and methyl methacrylate functional groups gave good filler dispersion, conductivity and tensile properties. The filler network in the matrix was studied with microscopy and from its non-linear viscoelasticity. The Maier-Göritze approach revealed that MWCNT network formation was favored in the NR functionalized with PMMA, with reduced electrical and mechanical percolation thresholds. The obvious improvement in physical performance of MWCNT/methyl methacrylate functionalized natural rubber nanocomposites was caused by interfacial interactions and reduced filler agglomeration in the NR matrix. The modification of NR with poly(methyl methacrylate) and MWCNT filler was demonstrated as an effective pathway to enhance the mechanical and electrical properties of natural rubber nanocomposites.  相似文献   

10.
《先进技术聚合物》2018,29(6):1661-1669
Recently, carbon nanofibers have become an innovative reinforcing filler that has drawn increased attention from researchers. In this work, the reinforcement of acrylonitrile butadiene rubber (NBR) with carbon nanofibers (CNFs) was studied to determine the potential of carbon nanofibers as reinforcing filler in rubber technology. Furthermore, the performance of NBR compounds filled with carbon nanofibers was compared with the composites containing carbon black characterized by spherical particle type. Filler dispersion in elastomer matrix plays an essential role in polymer reinforcement, so we also analyzed the influence of dispersing agents on the performance of NBR composites. We applied several types of dispersing agents: anionic, cationic, nonionic, and ionic liquids. The fillers were characterized by dibutylphtalate absorption analysis, aggregate size, and rheological properties of filler suspensions. The vulcanization kinetics of rubber compounds, crosslink density, mechanical properties, hysteresis, and conductive properties of vulcanizates were also investigated. Moreover, scanning electron microscopy images were used to determine the filler dispersion in the elastomer matrix. The incorporation of the carbon nanofibers has a superior influence on the tensile strength of NBR compared with the samples containing carbon black. It was observed that addition of studied dispersing agents affected the performance of NBR/CNF and NBR/carbon black materials. Especially, the application of nonylphenyl poly(ethylene glycol) ether and 1‐butyl‐3‐methylimidazolium tetrafluoroborate contributed to enhanced mechanical properties and electrical conductivity of NBR/CNF composites.  相似文献   

11.
The viscoelastic properties of the epoxy filled with silica nanoparicles have been investigated by dynamic nanoindentation and characterized by the storage modulus and loss tangent. The materials studied are neat epoxy and silica/epoxy composites with silica volume fraction of 1, 3, 6, 10, and 14 vol %, respectively. The silica nanoparticles with an average diameter of 25 nm are found to disperse homogeneously in the epoxy matrix. The effect of the particle content, force frequency, and penetration load on the viscoelastic behavior is studied and discussed. The comparison with traditional testing methods such as tension, bending, and DMTA is made. Besides, theoretical results by using micromechanics models are also obtained and compared with the experimental results. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1030–1038, 2009  相似文献   

12.
The effects of functionalized graphene sheets (FGSs) on the mechanical properties and strain‐induced crystallization of natural rubber (NR) are investigated. FGSs are predominantly single sheets of graphene with a lateral size of several hundreds of nanometers and a thickness of 1.5 nm. The effect of FGS and that of carbon black (CB) on the strain‐induced crystallization of NR is compared by coupled tensile tests and X‐ray diffraction experiments. Synchrotron X‐ray scattering enables simultaneous measurements of stress and crystallization of NR in real time during sample stretching. The onset of crystallization occurs at significantly lower strains for FGS‐filled NR samples compared with CB‐filled NR, even at low loadings. Neat‐NR exhibits strain‐induced crystallization around a strain of 2.25, while incorporation of 1 and 4 wt % FGS shifts the crystallization to strains of 1.25 and 0.75, respectively. In contrast, loadings of 16 wt % CB do not significantly shift the critical strain for crystallization. Two‐dimensional (2D) wide angle X‐ray scattering patterns show minor polymer chain alignment during stretching, in accord with previous results for NR. Small angle X‐ray scattering shows that FGS is aligned in the stretching direction, whereas CB does not show alignment or anisotropy. The mechanical properties of filled NR samples are investigated using cyclic tensile and dynamic mechanical measurements above and below the glass transition of NR. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

13.
This current study aimed to enhance the thermal conductivity of thin film composites without compromising other polymer qualities. The effect of adding high thermal conductivity nanoparticles on the thermal properties and moisture absorption of thin film epoxy composites was investigated. Three types of fillers in nanosize with high thermal conductivity properties, boron nitride (BN), synthetic diamond (SD), and silicon nitride (Si3N4) were studied. SN was later used as an abbreviation for Si3N4. The contents of fillers varied between 0 and 2 vol.%. An epoxy nanocomposite solution filled with high thermal conductivity fillers was spun at 1500–2000 rpm to produce thin film 40–60 µm thick. The effects of the fillers on thermal properties and moisture absorption were studied. The addition of 2 vol.% SD produced the largest improvement with 78% increment in thermal conductivity compared with the unfilled epoxy. SD‐filled epoxy thin film also showed good thermal stability with the lowest coefficients of thermal expansion, 19 and 124 ppm, before and after Tg, respectively, which are much lower compared with SN‐filled and BN‐filled epoxy thin film composites. However the SD‐filled epoxy film has its drawback as it absorbs more moisture compared with BN‐filled and SN‐filled epoxy film. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Bound rubber in a filled rubber compound is formed by physical adsorption and chemisorption between the rubber and the filler. Styrene–butadiene rubber (SBR) is composed of four components of styrene, cis‐1,4‐, trans‐1,4‐, and 1,2‐units. Filler–polymer interactions in both silica and carbon black‐filled SBR compounds were studied by analyzing microstructures of the bound rubbers with pyrolysis‐gas chromatography. Differences in the filler–polymer interactions of the styrene, cis‐1,4‐, trans‐1,4‐, and 1,2‐units were investigated. The filler–polymer interactions of the butadiene units were found to be stronger than that of the styrene unit. The interactions of the cis‐1,4‐ and trans‐1,4‐units were stronger with carbon black than with silica, whereas the 1,2‐unit interacted more strongly with silica than with carbon black. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 439–445, 2001  相似文献   

15.
Carbon black (CB) particles were employed as a reinforcing filler in carboxyl‐terminated butadiene acrylonitrile rubber (CTBN)/epoxy resin (diglycidyl ether of bisphenol‐A (DGEBA))/aromatic diamine (diamino diphenyl methane (DDM)) network polymer blends. The strength, modulus, and ability to absorb impact energy of the resulting composites were evaluated. The aim of this work was to determine the effects of interfacial interactions between components, and processing conditions (especially temperature) on mechanical properties. The application of high temperatures during the kneading process resulted in strong interfacial interactions between the CB particles and the CTBN. The formation of strong bonds at the CB/CTBN interfaces during kneading was the key factor in obtaining high strength and high impact energy absorbance. The composites also exhibited good adhesive strength during both shear and peel stress tests.  相似文献   

16.
The use of instrumented indentation to characterize the mechanical response of polymeric materials was studied. A model based on contact between a rigid probe and a linear viscoelastic material was used to calculate values for the creep compliance and stress relaxation modulus for two glassy polymeric materials, epoxy and poly(methyl methacrylate), and two poly(dimethyl siloxane) (PDMS) elastomers. Results from bulk rheometry studies were used for comparison with the indentation stress relaxation results. For the two glassy polymers, the use of sharp pyramidal tips produced responses that were considerably more compliant (less stiff) than the rheometry values. Additional study of the deformation remaining in epoxy after indentation creep testing as a function of the creep hold time revealed that a large portion of the creep displacement measured was due to postyield flow. Indentation creep measurements of the epoxy with a rounded conical tip also produced nonlinear responses, but the creep compliance values appeared to approach linear viscoelastic values with decreasing creep force. Responses measured for the unfilled PDMS were mainly linear elastic, with the filled PDMS exhibiting some time‐dependent and slight nonlinear responses in both rheometry and indentation measurements. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1794–1811, 2005  相似文献   

17.
Viscoelastic behavior at elevated temperatures of high‐density polyethylene and isotactic polypropylene was investigated by using the stress relaxation method. The results are interpreted from the view of an established two‐process model for stress relaxation in semicrystalline polymers. This model is based on the assumption that the stress relaxation can be represented as a superposition of two thermally activated processes acting in parallel. Each process is associated either with the crystal or amorphous phase of a polymer sample. It was found that the temperature dependence of viscosity coefficients and elastic moduli of these two fractions are similar in the two materials. The experimental data was correlated with literature data of α and β processes in polyethylene and polypropylene obtained from dynamic mechanical thermal analysis. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3239–3246, 2000  相似文献   

18.
Molecular composites were prepared from several types of ionically modified, poly(p‐phenylene terephthalamide) (PPTA) dispersed in a poly(4‐vinylpyridine) matrix. Optical clarity tests indicated that the component polymers of the composite were miscible, at least at low concentrations of the rodlike reinforcement. In composites containing ionic PPTA, where ionic sulfonate groups were attached as side groups either to PPTA chains or to PPTA anion chains, the glass‐transition temperature (Tg) was increased by l0 °C or more, at 5 wt % reinforcement. At concentrations of 10–15 wt % of the ionic polymer, Tg values leveled off or decreased slightly. This suggested that some aggregation of the rigid‐rod molecules occurred. In composites containing ionic PPTA, where the ionic sulfonate groups were directly attached to the phenylene rings of PPTA chains, not only was Tg shifted significantly to higher temperatures, but the rubbery plateau modulus retained high values up to temperatures of 250 °C or above. Observed effects were considered to be the result of strong ionic interactions between the ionic reinforcement polymer and the polar matrix polymer. The possible effects of the counterion on Tg and the storage modulus are discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1110–1117, 2002  相似文献   

19.
A viscoelastic approach of the compression set test is addressed in this work. This test measures the ability of rubber compounds to retain elastic properties after prolonged action of compressive stresses. Elastic properties were tested by recording the normal stress under a constant deformation of 25% with a laboratory rheometer. Considering the Boltzmann superposition principle, compression set data were modeled from the relaxation of Young's modulus, described by a Maxwell spectrum plus a constant E defining the elastic properties at the long times. This approach was developed with the copolymer of ethylene and vinyl acetate (EVA) networks crosslinked by radical chemistry and by an exchange reaction between acetate groups and silane compounds as crosslinking agents. Regarding the recovery of the elastic properties, radical chemistry provided better results than the exchange reaction for the identical crosslinking density of the network. Then, the Curro–Pincus molecular approach was developed to understand the influence of the microstructure of the EVA network on the elastic properties. The difference of the elastic properties between the two networks crosslinked by two different chemistry means was accounted for by considering the probability of having a dangling end of n units for a random crosslinking process. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1779–1790, 2003  相似文献   

20.
Bioactive glass was first synthesized by L. Hench in 1971. There are many studies on the properties of several metals and metal ions dopants used in the SiO2‐CaO‐P2O5 system of bioglasses, such as Ag, Cu, Zn, and Fe. A number of authors have carried out research related to the influence of silver oxide on the properties of bioglasses . However, publications on the properties of elastomer‐based composites containing bioactive glasses are relatively scarce. We have not found in the literature studies discussing how silver oxide concentration in bioglasses of the CaO‐SiO2‐P2O5‐Ag2O system affects the significant properties of a natural rubber biocomposite. In this regard, the purpose of the present work is to investigate the aforementioned influence on the properties of this type of composites, namely, vulcanization, physicomechanical, thermal, dynamic, dielectric, electric, and thermoconductive characteristics. We have established those parameters of the composites to be impacted considerably by both degree of filling with bioglass and the silver oxide content in the latter. The improvement in the composites thermostability and some of their physicomechanical performance is the most significant. The volume resistance decreases, and the thermal conductivity coefficients increase. Results from scanning electron microscopy and energy‐dispersive X‐ray (EDX) analyses have confirmed the influence of silver oxide initially on the phase composition of the bioglass, hence on the properties of the biocomposites through changes in the bioglass used as filler. The dielectric characteristics of some of the biocomposites suggest that they can be used as substrates and insulating layers in flexible antennas for short‐range wireless communications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号