首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three series of semi‐interpenetrating polymer networks, based on crosslinked poly(N‐isopropyl acrylamide) (PNIPA) and 1 wt % nonionic or ionic (cationic and anionic) linear polyacrylamide (PAAm), were synthesized to improve the mechanical properties of PNIPA gels. The effect of the incorporation of linear polymers into responsive networks on the temperature‐induced transition, swelling behavior, and mechanical properties was studied. Polymer networks with four different crosslinking densities were prepared with various molar ratios (25:1 to 100:1) of the monomer (N‐isopropyl acrylamide) to the crosslinker (methylenebisacrylamide). The hydrogels were characterized by the determination of the equilibrium degree of swelling at 25 °C, the compression modulus, and the effective crosslinking density, as well as the ultimate hydrogel properties, such as the tensile strength and elongation at break. The introduction of cationic and anionic linear hydrophilic PAAm into PNIPA networks increased the rate of swelling, whereas the presence of nonionic PAAm diminished it. Transition temperatures were significantly affected by both the crosslinking density and the presence of linear PAAm in the hydrogel networks. Although anionic PAAm had the greatest influence on increasing the transition temperature, the presence of nonionic PAAm caused the highest dimensional change. Semi‐interpenetrating polymer networks reinforced with cationic and nonionic PAAm exhibited higher tensile strengths and elongations at break than PNIPA hydrogels, whereas the presence of anionic PAAm caused a reduction in the mechanical properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3987–3999, 2004  相似文献   

2.
Temperature sensitive poly{N‐[3‐(dimethylaminopropyl)]methacrylamide‐co‐acrylamide} [P(DMAPMA‐co‐AAm)] hydrogels were prepared by the free‐radical crosslinking copolymerization of corresponding monomers in water with N,N‐methylenebisacrylamide as the crosslinker, ammonium persulfate as the initiator, and N,N,N′,N′‐tetramethylethylenediamine as the activator. The swelling equilibrium of the P(DMAPMA‐co‐AAm) hydrogels was investigated as a function of temperature in aqueous solutions of the anionic surfactant sodium dodecyl sulfate and the cationic surfactant dodecyltrimethylammonium bromide. In pure water, regardless of the amount of N,N‐methylenebisacrylamide, the P(DMAPMA‐co‐AAm) hydrogels showed a discontinuous phase transition between 30 and 36 °C. However, the transition temperature changed from discontinuous to continuous with the addition of surfactants; this was ascribed to the conversion of nonionic P(DMAPMA‐co‐AAm) hydrogels into polyelectrolyte hydrogels due to the binding of surfactants through hydrophobic interactions. Additionally, the concentrations of free sodium dodecyl sulfate and dodecyltrimethylammonium bromide ions were measured at different temperatures by conductometry, and it was found that the electric conductivity of the P(DMAPMA‐co‐AAm)–surfactant systems depended strongly on the swelling ratio; most notably, it changed drastically near the phase‐transition temperature of the P(DMAPMA‐co‐AAm) hydrogel. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1645–1652, 2006  相似文献   

3.
In this study, highly swollen acrylamide/crotonic acid hydrogels (in a rod form) containing some inorganic salts such as ammonium nitrate, potassium nitrate and ammonium sulphate used as fertilizer, an agricultural drug such as Dalapon (sodium 2,2‐dichloropropionate) and two crosslinkers such as ethylene glycol dimethacrylate and 1,4‐butandiol dimethacrylate were prepared by copolymerization of acrylamide and crotonic acid with γ‐radiation. As a result of swelling tests, the influence of γ‐ray dose and relative content of crotonic acid on the swelling properties, the diffusional behavior of water, diffusion coefficients and network properties of the hydrogel systems were examined. Acrylamide/crotonic acid hydrogels containing these salts and agricultural drug were swollen in the range 2045–400% in water, while polyacrylamide hydrogels swelled in the range 660–700%. Water intake of hydrogels followed a nonFickian‐type diffusion. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
In this work we propose a new crosslinking agent and the method to use it for the synthesis of acrylate based hydrogels. The use of this diacrylate of glycerol, synthesized in our laboratory, allows the generation of materials with well defined micro‐structures in the dry state, unique meso‐ and macro‐structures during swelling, and enhanced mechanical properties and swelling capacity in water. These properties depend on the crosslinking agent concentration, as well as synthesis thermal history. Poly(acrylamide‐co‐acrylic acid) hydrogels are commonly crosslinked with N, N′‐methylenebisacrylamide or N‐isopropylacrylamide. Here we obtain and use a new crosslinking agent, obtained from the reaction between glycerol and acrylic acid to produce a Diacrylate of glycerol (DAG). Two synthesis methods at equivalent molar ratio of acrylamide/acrylic acid (AM/AA) were analyzed. The mechanical properties, the swelling capacity, and the morphology at microscale of these hydrogels showed a well defined transition at a critical concentration of crosslinking agent. DAG induces the generation of hydrogels with hierarchichal structure. The micro‐structure surface morphology was investigated by scanning electron microscopy, the meso‐structure by polarized light microscopy and the macro‐structure by CCD imaging. The hydrogels with hierarchical structures showed improved mechanical properties when compared with structureless hydrogels. Control of the microstructure allows the generation of materials for different applications, i.e. templates or smart materials that interact with electromagnetic radiation. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2667–2679, 2008  相似文献   

5.
In this study, a novel classical thermo‐ and salt‐sensitive semi‐interpenetrating polymer network (semi‐IPN) hydrogel composed of poly(N,N‐diethylacrylamide) (PDEAm) and κ‐carrageenan (KC) was synthesized by free radical polymerization. The structure of the hydrogels was studied by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). FTIR and SEM revealed that the semi‐IPN hydrogels possessed the structure of H‐bonds and larger number of pores in the network. Compared to the PDEAm hydrogel, the prepared semi‐IPN hydrogels exhibited a much faster response rate to temperature changes and had larger equilibrium swelling ratios at temperatures below the lower critical solution temperature (LCST). The salt‐sensitive behavior of the semi‐IPN hydrogels was dependent on the content of KC. In addition, during the reswelling process, semi‐IPN hydrogels showed a non‐sigmoidal swelling pattern. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Star‐shaped oligo[(D ,L ‐lactide)‐co‐ε‐caprolactone]s (PCLA) with various number average molecular weights were synthesized via ring‐opening polymerization of D ,L ‐lactide (DLLA) and ε‐caprolactone (CL) with organic Sn as catalyst and pentaerythritol as an initiator. The elastic amorphous interpenetrating polymer networks (IPNs) of polyesterurethane/poly(ethylene glycol) dimethacrylate (PEGDMA) were synthesized in situ by UV‐photopolymerization of PEGDMA and thermal polymerization of PCLA with isophorone diisocyanate (IPDI). IPNs are transparent soft materials and the gel content of the IPNs is exceeding 87%. They are rubbery when PEGDMA content is above 10% at room temperature. IPNs show good shape‐memory properties. IPNs recover quickly its permanent form in 10 sec when the environment temperature is above its glass transition temperature (Tg). IPNs have only one single Tg between the Tg of PEGDMA and polyesterurethane. The strain recovery rate (Rr) and the strain fixity rate (Rf) are above 90%. No characteristic peaks of PEG crystallites in X‐ray diffraction pattern (XRD) demonstrate that they are amorphous polymer networks. The wettability, degradation rate, mechanical properties, and Tg of the IPNs could be conveniently adjusted by changing PEGDMA content in IPNs. The soft IPNs are promising suitable as potential soft substrates with tailored mechanical properties for potential clinical or medical use. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Hydrogels of N‐vinylimidazole (VI) and sodium styrenesulfonate (SSS) were synthesized in aqueous solution by radical crosslinking copolymerization with N,N′‐methylene‐bis(acrylamide) as crosslinker. Swelling in several saline solutions was measured for hydrogel samples synthesized with different comonomer concentrations (CT = 10, 25, or 40%) and with SSS mole fractions covering a broad range (fSSS = 0–0.7), while the crosslinker ratio was 2 wt % in all cases. The degree of swelling in aqueous solution with a specific ionic strength (μ), plotted versus the SSS composition of the feed, shows a minimum for any set of samples synthesized with a fixed CT. The dependence of swelling on μ shows both polyelectrolyte (fSSS beyond the minimum) and antipolyelectrolyte behaviors (in the low fSSS limit). It was found that the nonGaussian factor of the crosslinking density and the polymer‐solvent interaction parameter increase with fSSS for any CT. Moreover, in the low fSSS limit, the osmotic swelling pressure is governed not only by the ionic contribution, but also by the polymer‐solvent mixing and, the concentration of mobile counterions inside the gel is not proportional to the net fixed charge but to the addition of cationic and anionic side groups, what discards the formation of ionic pairs. The antipolyelectrolyte effect is interpreted as due to the increasing protonation of VI as μ goes up. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1683–1693, 2007  相似文献   

8.
Nanostructure, glass transition dynamics and elastic properties were studied in the 3D nanodiamond‐containing composites based on polyurethane‐poly(2‐hydroxyethyl methacrylate) semi‐interpenetrating polymer networks (PU‐PHEMA semi‐IPNs), neat PU or PHEMA matrices. Nanodiamond (ND) content in the nanocomposites varied from 0.25 to 3 wt %. Combined differential scanning calorimetry/ laser‐interferometric creep rate spectroscopy/atomic force microscopy approach was utilized. A large impact of small 3D ND additives on PU‐PHEMA networks' dynamics and properties was revealed under conditions when an average inter‐particle distance L exceeds by far gyration radius Rg. The pronounced heterogeneity of glass transitions' dynamics and two opposite effects were observed. The main effect was a strong suppression of PHEMA glass transition dynamics at 90–180 °C, with the enhancement of creep resistance and threefold to sixfold increasing modulus of elasticity. The peculiarly crosslinked structure of nanocomposites, due to double covalent hybridization, resulted in low rheological percolation threshold, and a synergistic effect in dynamics was observed. Less pronounced effect of accelerating dynamics in the temperature region between β‐ and α‐transitions in PHEMA was associated with dynamics in domains with loosened molecular packing. The distinct physical limit for “anomalous” decreasing Tg is predicted in terms of the notion of the common segmental nature of α‐ and β‐relaxations. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1696–1712, 2008  相似文献   

9.
Poly(acrylamide‐co‐acrylic acid)/polyacrylamide [P(AM‐co‐AA)/PAM] hydrogel with superporous and interpenetrating network (IPN) structure was prepared by a prepolymerization reaction and a synchronous polymerization reaction and frothing process. Scanning electron microscope (SEM) images show that the resultant hydrogel possesses abundant interconnected pores. DSC indicates that the porous structure enhances the swelling ratio and reduces the interaction between water and the hydrogel. In contrast, the IPN by PAM decreases water absorbency and enhances water retentivity. It is found that a superporous stucture in the hydrogel increases the equilibrium swelling ratio and decreases the compressive strength of the hydrogel. On the other hand, the increase in AM oligomer (oligo‐AM) amount decreases the equilibrium swelling ratio and improves the compressive strength of the hydrogel. Therefore, the two‐steps synthesis method can be used to construct a hydrogel with superporous and IPN structure. The swelling and mechanical properties of the hydrogel can be improved effectively. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
The peculiarities of segmental dynamics over the temperature range of ?140 to 180 °C were studied in polyurethane‐poly(2‐hydroxyethyl methacrylate) semi‐interpenetrating polymer networks (PU‐PHEMA semi‐IPNs) with two‐phase, nanoheterogeneous structure. The networks were synthesized by the sequential method when the PU network was obtained from poly(oxypropylene glycol) (PPG) and adduct of trimethylolpropane (TMP) and toluylene diisocyanate (TDI), and then swollen with 2‐hydroxyethyl methacrylate monomer with its subsequent photopolymerization. PHEMA content in the semi‐IPNs varied from 10 to 57 wt %. Laser‐interferometric creep rate spectroscopy (CRS), supplemented with differential scanning calorimetry (DSC), was used for discrete dynamic analysis of these IPNs. The effects of anomalous, large broadening of the PHEMA glass transition to higher temperatures in comparison with that of neat PHEMA, despite much lower Tg of the PU constituent, and the pronounced heterogeneity of glass transition dynamics were found in these networks. Up to 3 or 4 overlapping creep rate peaks, characterizing different segmental dynamics modes, have been registered within both PU and PHEMA glass transitions in these semi‐IPNs. On the whole, the united semi‐IPN glass transition ranged virtually from ?60 to 160 °C. As proved by IR spectra, some hybridization of the semi‐IPN constituents took place, and therefore the effects observed could be properly interpreted in the framework of the notion of “constrained dynamics.” The peculiar segmental dynamics in the semi‐IPNs studied may help in developing advanced biomedical, damping, and membrane materials based thereon. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 963–975, 2007  相似文献   

11.
Collagen and elastin are the major proteins of an extracellular matrix. They possess attractive, complementary mechanical properties in their native state, but during isolation, its unique structure is destroyed, which affects the parameters of the materials. However, they still have excellent biological properties. The cross‐linking process improves the physicochemical properties of protein materials. The ideal cross‐linking agent should be effective and does not impair the biological properties of the material. Therefore, poly(ethylene) glycol‐dialdehyde was used in the study. The results show that the addition of poly(ethylene) glycol‐dialdehyde in combination with the neutralization of a collagen/elastin solution is a useful method for preparation of protein hydrogels. The gels are transparent and relatively stiff. They exhibit good mechanical properties, surface properties and are attractive for 3 T3 cells. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
P(NIPAAm-co-Aam)共聚凝胶和PAAc/P(NIPAAm-co-Aam) IPN凝胶的溶胀与释药性能;N-异丙基丙烯酰胺;丙烯酰胺;丙烯酸;共聚;互穿聚合物网络;水凝胶;溶胀;释药  相似文献   

13.
In the present work, sequential interpenetrating polymer networks (IPNs) based on silicone and poly(2‐methacryloyloxyethyl phosphorylcholine) (PMPC) were developed with improved protein resistance. The structure and morphology of the IPNs were characterized by Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The results showed that the IPNs exhibited heterogeneous morphology. The bulk properties such as water content, ion permeability, and mechanical strength of the IPNs were determined by gravimetric method, ionoflux measurement technique, and tensile tester, respectively. The surface characteristics of the IPNs were investigated by X‐ray photoelectron spectroscopy (XPS) and contact angle measurements. XPS analysis suggested that PMPC was present on the surface as well as in the bulk material. The IPNs possessed more hydrophilic surface than pristine silicone revealed by contact angle measurements. Bovine serum albumin (BSA) was used as a model protein to evaluate protein resistance by a bicinchoninic acid assay method. The result revealed that the protein adsorption on the IPNs was significantly reduced compared to pristine silicone. These results suggest that the IPNs based on silicone and PMPC may be developed as novel ophthalmic biomaterials. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
We successfully prepared a series of transparent materials with semi‐interpenetrating polymer networks (semi‐IPNs) from castor‐oil‐based polyurethane (PU) and benzyl starch (BS). The miscibility, morphology, and properties of the semi‐IPN films were investigated with attenuated total reflection/Fourier transform infrared spectroscopy, differential scanning calorimetry, dynamic mechanical thermal analysis, scanning electron microscopy, wide‐angle X‐ray diffraction, electron spin resonance (ESR), ultraviolet–visible spectroscopy, and tensile testing. The results revealed that the semi‐IPN films had good or certain miscibility with BS concentrations of 5–70 wt % because of the strong intermolecular interactions between PU and BS. With an increase in the concentration of BS, the tensile strength and Young's modulus of the semi‐IPN materials increased. The ESR data confirmed that the segment volume of PU in the semi‐IPNs increased with the addition of BS; that is, the chain stiffness increased as a result of strong interactions between PU and BS macromolecules. It was concluded that starch derivatives containing benzyl groups in the side chains more easily penetrated the PU networks to form semi‐IPNs than those containing aliphatic groups, and this led to improved properties. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 603–615, 2005  相似文献   

15.
A series of superabsorbents of maleic anhydride (MAH)/acrylamide (AM) interpenetrated with poly(vinyl alcohol) (PVA) were prepared by aqueous polymerization, using N,N‐methylenebiacrylamide (NNMBA) as a crosslinker and ammonium persulfate (APS) as an initiator. The samples were characterized by Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), and scanning electron microscope (SEM). The effects of reaction variables on the water absorbency of the superabsorbents in distilled water and in 0.9 wt% NaCl solution were investigated. In addition, the effect of the PVA content on the swelling rate and sensitivity to saline of the superabsorbents were also investigated. The results showed that the absorbency, both in 0.9 wt% NaCl solution and in distilled water, first decreased and then increased with increasing PVA content. Moreover, the resultant superabsorbent had a higher absorption rate and it became less sensitive to saline by incorporating certain amount of PVA into the network of the hydrogel. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
17.
Aiming to develop a suitable ion exchange membrane for vanadium redox flow battery (VRB), a new kind of imidazolium salt type anion exchange membrane based on the copolymer of N‐vinylimidazole and 2,2,2‐trifluoroethyl methacrylate has been prepared. The membrane is characterized by means of water uptake, ion‐exchange capacity, ionic conductivity, and thermal stability. Furthermore, a VRB with this membrane is assembled, and the performance of such VRB is evaluated. The permeability experiments show that this membrane has reasonable low permeability of vanadium ions. The coulombic efficiency (CE) and energy efficiency (EE) of VRB with the synthesized membrane are 99.5% and 75.0%, whereas the CE and EE of the VRB with Nafion® 117 membrane are 82.6% and 72.6%, respectively. The synthesized membrane shows good chemical stability in VRB via more than 4000 cycles test. Therefore, this membrane shows good applicable potential in VRB. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
To combine the advantages of a biopolymer with hydrotalcite in an enzyme immobilization system, the intercalation polymerization was used to prepare poly(acrylic acid‐co‐acrylamide)/hydrotalcite (PAA‐AAm/HT) nanocomposite hydrogels using sodium methyl allyl sulfonate as intercalation agent. Transmission electron microscopy, X‐ray diffraction, and Fourier transform infrared spectroscopy results revealed that sodium methyl allyl sulfonate chains entered into the interlayer of HT, the interaction between them has taken place, and HT was dramatically exfoliated into nanoscale and homogeneously dispersed in the PAA‐AAm matrix. Transmission electron microscopy and cryo scanning electron microscope results showed that dried hydrogels were regular spherical particles, and swollen hydrogels revealed homogeneous porous network structures. Then, PAA‐AAm/HT nanocomposite hydrogels were used to immobilize carbonic anhydrase (CA), and the CO2 hydration activities of free enzyme and immobilized enzyme were evaluated. Results showed that immobilized CA retained the majority of the enzyme activity. The reason may be the formation of a microenvironment almost all of which is composed of free water inside the porous network structures. Therefore, the immobilized CA is of great potential in the removal of trace CO2 from the closed spaces. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3232–3240, 2009  相似文献   

19.
Interpenetrating polymer network (IPN) strategy was developed to fabricate novel hydrogels composed of cellulose and poly(N‐isopropylacrylamide) (PNIPAAm) with high mechanical strength and adjustable thermosensitivity. Cellulose hydrogels were prepared by chemically cross‐linking cellulose in NaOH/urea aqueous solution, which were employed as the first network. The second network was subsequently obtained by in situ polymerization/cross‐linking of N‐isopropylacrylamide in the cellulose hydrogels. The results from FTIR and solid 13C NMR indicated that the two networks co‐existed in the IPN hydrogels, which exhibited uniform porous structure, as a result of good compatibility. The mechanical and swelling properties of IPN hydrogels were strongly dependent on the weight ratio of two networks. Their temperature‐sensitive behaviors and deswelling kinetics were also discussed. This work created double network hydrogels, which combined the advantages of natural polymer and synthesized PNIPAAm collectively in one system, leading to the controllable temperature response and improvement in the physical properties. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
Fast responsive temperature‐ and pH‐sensitive hydrogels of poly(N,N‐diethylacrylamide‐co‐acrylic acid) (P(DEA‐co‐AA)) have been synthesized successfully by a two‐step procedure, in which the initial polymerization was conducted at constant temperature for 15 min, followed by further polymerization at ?30°C for 12 hr. Swelling studies showed that hydrogels thus prepared had almost the same temperature and pH sensitivity compared with the conventional ones (polymerized at 24°C for 12 hr). However, hydrogels thus prepared had faster swelling/deswelling rates in distilled water than the conventional ones, and their deswelling rates in low pH buffer solutions were also faster than the conventional ones. These improved properties were attributed to the porous network structure, which was confirmed by the results of scanning electron microscopy. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号