首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The controlled nitroxide‐mediated homopolymerization of 9‐(4‐vinylbenzyl)‐9H‐carbazole (VBK) and the copolymerization of methyl methacrylate (MMA) with varying amounts of VBK were accomplished by using 10 mol % {tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino} nitroxide relative to 2‐({tert‐butyl[1‐(diethoxyphosphoryl)‐2,2‐dimethylpropyl]amino}oxy)‐2‐methylpropionic acid (BlocBuilder?) in dimethylformamide at temperatures from 80 to 125 °C. As little as 1 mol % of VBK in the feed was required to obtain a controlled copolymerization of an MMA/VBK mixture, resulting in a linear increase in molecular weight versus conversion with a narrow molecular weight distribution (Mw /Mn ≈ 1.3). Preferential incorporation of VBK into the copolymer was indicated by the MMA/VBK reactivity ratios determined: rVBK = 2.7 ± 1.5 and rMMA = 0.24 ± 0.14. The copolymers were found significantly “living” by performing subsequent chain extensions with a fresh batch of VBK and by 31P NMR spectroscopy analysis. VBK was found to be an effective controlling comonomer for NMP of MMA, and such low levels of VBK comonomer ensured transparency in the final copolymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
Curcumin (Cur), a natural colorant found in the roots of the Turmeric plant, has been reported for the first time as photoinitiator for the copolymerization of styrene (Sty) and methylmethacrylate (MMA). The kinetic data, inhibiting effect of benzoquinone and ESR studies indicate that the polymerization proceeds via a free radical mechanism. The system follows ideal kinetics (Rp α[Cur]0.5[Sty]0.97[MMA]1). The reactivity ratios calculated by using the Finemann–Ross and Kelen‐Tudos models were r1(MMA)=0.46 and r2(Sty)=0.52. IR and NMR analysis confirmed the structure of the copolymer. NMR spectrum showing methoxy protons as three distinct groups of resonance between 2.2–3.75 δ and phenyl protons of styrene at 6.8–7.1 δ confirmed the random nature of the copolymer. The mechanism for formation of radicals and random copolymer of styrene and MMA [Sty‐co‐MMA] is also discussed.  相似文献   

3.
The RAFT (co)polymerization kinetics of methyl methacrylate (MMA) and n‐butyl acrylate (BA) mediated by 2‐cyanoprop‐2‐yl dithiobenzoate was studied with various RAFT concentrations and monomer compositions. The homopolymerization of MMA gave the highest rate. Increasing the BA fraction fBA dramatically decreased the copolymerization rate. The rate reached the lowest point at fMMA ~ 0.2. This observation is in sharp contrast to the conventional RAFT‐free copolymerization, where BA homopolymerization gave the highest rate and the copolymerization rate decreased monotonously with increasing fMMA. This peculiar phenomenon can be explained by the RAFT retardation effect. The RAFT copolymerization rate can be described by 〈Rp〉/〈Rp0 = (1 + 2(〈kc〉/〈kt〉)〈K〉)[RAFT]0)?0.5, where 〈Rp0 is the RAFT‐free copolymerization rate and 〈K〉 is the apparent addition–fragmentation equilibrium coefficient. A theoretical expression of 〈K〉 based on a terminal model of addition and fragmentation reactions was derived and successfully applied to predict the RAFT copolymerization kinetics with the rate parameters obtained from the homopolymerization systems. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3098–3111, 2007  相似文献   

4.
Ruthenium trichloride (RuCl3 or RuIII) catalyzed polymerization of methylmethacrylate (MMA) initiated with n‐butylamine (BA) in the presence of carbon tetrachloride (CCl4) by a charge‐transfer mechanism has been investigated in a dimethylsulfoxide (DMSO) medium by employing a dilatometric technique at 60°C. The rate of polymerization (Rp) has been obtained under the conditions [CCl4]/[BA] ? 1 and [CCl4]/[BA] ? 1. The kinetic data indicate the possible participation of the charge‐transfer complex formed between the amine–RuIII complex and CCl4 in the polymerization of MMA. In the absence of either CCl4 or BA, no polymerization of MMA is observed under the present experimental conditions. The rate of polymerization is inhibited by hydroquinone, suggesting a free‐radical initiation. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 43: 70–77, 2011  相似文献   

5.
n‐Butyl acrylate (BA), 2‐ethylhexyl acrylate (EHA), and methyl methacrylate (MMA) are commonly used monomers in pressure‐sensitive adhesive formulations. The bulk free‐radical copolymerizations of BA/EHA, MMA/EHA, and BA/MMA are studied at 60 °C to demonstrate the use of copolymer reactivity ratios for the prediction of BA/MMA/EHA terpolymer composition. The reactivity ratios for BA/EHA and MMA/EHA copolymer systems are determined using low conversion experiments; BA/MMA reactivity ratios are already known from the literature. The reactivity ratio estimates for the BA/EHA system are r BA = 0.994 and r EHA = 1.621 and the estimates for MMA/EHA are r MMA = 1.496 and r EHA = 0.315. High conversion experiments are conducted to validate the reactivity ratios. The copolymer reactivity ratios are shown to predict terpolymer composition of high conversion BA/MMA/EHA experiments.  相似文献   

6.
The free‐radical homopolymerization and copolymerization behavior of N‐(2‐methylene‐3‐butenoyl)piperidine was investigated. When the monomer was heated in bulk at 60 °C for 25 h without an initiator, about 30% of the monomer was consumed by the thermal polymerization and the Diels–Alder reaction. No such side reaction was observed when the polymerization was carried out in a benzene solution with 1 mol % 2,2′‐azobisisobutylonitrile (AIBN) as an initiator. The polymerization rate equation was found to be Rp ∝ [AIBN]0.507[M]1.04, and the overall activation energy of polymerization was calculated to be 89.5 kJ/mol. The microstructure of the resulting polymer was exclusively a 1,4‐structure that included both 1,4‐E and 1,4‐Z configurations. The copolymerizations of this monomer with styrene and/or chloroprene as comonomers were carried out in benzene solutions at 60 °C with AIBN as an initiator. In the copolymerization with styrene, the monomer reactivity ratios were r1 = 6.10 and r2 = 0.03, and the Q and e values were calculated to be 10.8 and 0.45, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1545–1552, 2003  相似文献   

7.
A combined system of sodium tetraphenylborate (STPB) and p‐chlorobenzenediazonium tetrafluoroborate (CDF) serves as an effective initiator at low temperatures for acrylate monomers such as methyl methacrylate (MMA), ethyl acrylate, and di‐2‐ethylhexyl itaconate. The polymerization of MMA with the STPB/CDF system has been kinetically investigated in acetone. The polymerization shows a low overall activation energy of 60.3 kJ/mol. The polymerization rate (Rp) at 40 °C is given by Rp = k[STPB/CDF]0.5[MMA]1.6, when the molar ratio of STPB to CDF is kept constant at unity, suggesting that STPB and CDF form a complex with a large stability constant and play an important role in initiation and that MMA participates in the initiation process. From the results of a spin trapping study, p‐chlorophenyl and phenyl radicals are presumed to be generated in the polymerization system. A plausible initiation mechanism is proposed on the basis of kinetic and electron spin resonance results. A large solvent effect on the polymerization can be observed. The largest Rp value in dimethyl sulfoxide is 11 times the smallest value in N,N‐dimethylformamide. The copolymerization of MMA and styrene with the STPB/CDF system gives results somewhat different from those of conventional radical copolymerization. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4206–4213, 2001  相似文献   

8.
Free‐radical homo‐ and copolymerization behavior of N,N‐diethyl‐2‐methylene‐3‐butenamide (DEA) was investigated. When the monomer was heated in bulk at 60 °C for 25 h without initiator, rubbery, solid gel was formed by the thermal polymerization. No such reaction was observed when the polymerization was carried out in 2 mol/L of benzene solution with with 1 mol % of azobisisobutyronitrile (AIBN) as an initiator. The polymerization rate (Rp) equation was Rp ∝ [DEA]1.1[AIBN]0.51, and the overall activation energy of polymerization was calculated 84.1 kJ/mol. The microstructure of the resulting polymer was exclusively a 1,4‐structure where both 1,4‐E and 1,4‐Z structures were included. From the product analysis of the telomerization with tert‐butylmercaptan as a telogen, the modes of monomer addition were estimated to be both 1,4‐ and 4,1‐addition. The copolymerizations of this monomer with styrene and/or chloroprene as comonomers were also carried out in benzene solution at 60 °C. In the copolymerization with styrene, the monomer reactivity ratios obtained were r1 = 5.83 and r2 = 0.05, and the Q and e values were Q = 8.4 and e = 0.33, respectively. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 999–1007, 2004  相似文献   

9.
The radical copolymerization of limonene (optically active) with methyl methacrylate in xylene at 80±0.1°C for 1 hr, initiated by benzoyl peroxide (BPO) yield alternating copolymer(s), under the inert atmosphere of nitrogen, as evidenced by reactivity ratios r1 (MMA)=0.07 and r2 (limonene)=0.012 using the Kelen–Tüdos method. The kinetic expression is Rα[I]0.5[MMA]1.0[Lim.]?1.0. The decrease in the rate of polymerization with increase in concentration of limonene is due to penultimate unit effect. The overall energy of activation is calculated as 49 kJ/mole. FTIR of the copolymer(s) shows the characteristic frequencies at 1732.40 and 2951.40 cm?1 due to –OCH3 of MMA and aromatic C–H stretching of limonene, respectively. 1H NMR spectra shows peak at 3.8–4.1 δ and 5.3–5.6 δ due to –OCH3 of MMA and trisubstituted olefinic protons [–CH=CH–CH2–] of limonene, respectively.  相似文献   

10.
N–Isopropylacrylamide (NIPAM) was polymerized using 1‐pyrenyl 2‐chloropropionate (PyCP) as the initiator and CuCl/tris[2‐(dimethylamino)ethyl]amine (Me6TREN) as the catalyst system. The polymerizations were performed using the feed ratio of [NIPAM]0/[PyCP]0/[CuCl]0/[Me6TREN]0 = 50/1/1/1 in DMF/water of 13/2 at 20 °C to afford an end‐functionalized poly(N‐isopropylacrylamide) with the pyrenyl group (Py–PNIPAM). The characterization of the Py–PNIPAM using matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry provided the number–average molecular weight (Mn,MS). The lower critical solution temperature (LCST) for the liquid–solid phase transition was 21.7, 24.8, 26.5, and 29.3 °C for the Py–PNIPAMs with the Mn,MS's of 3000, 3400, 4200, and 5000, respectively; hence, the LCST was dramatically lowered with the decreasing Mn,MS. The aqueous Py–PNIPAM solution below the LCST was characterized using a static laser light scattering (SLS) measurement to determine its molar mass, Mw,SLS. The aqueous solutions of the Py–PNIPAMs with the Mn,MS's of 3000, 3400, 4200, and 5000 showed the Mw,SLS of 586,000, 386,000, 223,000, and 170,000, respectively. Thus, lowering the LCST for Py–PNIPAM should be attributable to the formation of the PNIPAM aggregates. The LCST of 21.7 °C for Py–PNIPAM with the Mn,MS of 3000 was effectively raised by adding β‐cyclodextrin (β‐CD) and reached the constant value of ~26 °C above the molar ratio of [β‐CD]/[Py–PNIPAM] = 2/1, suggesting that β‐CD formed an inclusion complex with pyrene in the chain‐end to disturb the formation of PNIPAM aggregates, thus raising the LCST. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1117–1124, 2006  相似文献   

11.
Polymerization of 2‐methacryloyloxyethyl phosphorylcholine (MPC) was kinetically investigated in ethanol using dimethyl 2,2′‐azobisisobutyrate (MAIB) as initiator. The overall activation energy of the homogeneous polymerization was calculated to be 71 kJ/mol. The polymerization rate (Rp) was expressed by Rp = k[MAIB]0.54±0.05 [MPC]1.8±0.1. The higher dependence of Rp on the monomer concentration comes from acceleration of propagation due to monomer aggregation and also from retardation of termination due to viscosity effect of the MPC monomer. Rate constants of propagation (kp) and termination (kt) of MPC were estimated by means of ESR to be kp = 180 L/mol · s and kt = 2.8 × 104 L/mol · s at 60 °C, respectively. Because of much slower termination, Rp of MPC in ethanol was found at 60 °C to be 8 times that of methyl methacrylate (MMA) in benzene, though the different solvents were used for MPC and MMA. Polymerization of MPC with MAIB in ethanol was accelerated by the presence of water and retarded by the presence of benzene or acetonitrile. Poly(MPC) showed a peculiar solubility behavior; although poly(MPC) was highly soluble in ethanol and in water, it was insoluble in aqueous ethanol of water content of 7.4–39.8 vol %. The radical copolymerization of MPC (M1) and styrene (St) (M2) in ethanol at 50 °C gave the following copolymerization parameters similar to those of the copolymerization of MMA and St; r1 = 0.39, r2 = 0.46, Q1 = 0.76, and e1 = +0.51. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 509–515, 2000  相似文献   

12.
Polymerization of N‐(1‐phenylethylaminocarbonyl)methacrylamide (PEACMA) with dimethyl 2,2′‐azobisisobutyrate (MAIB) was kinetically studied in dimethyl sulfoxide (DMSO). The overall activation energy of the polymerization was estimated to be 84 kJ/mol. The initial polymerization rate (Rp) is given by Rp = k[MAIB]0.6[PEACMA]0.9 at 60 °C, being similar to that of the conventional radical polymerization. The polymerization system involved electron spin resonance (ESR) spectroscopically observable propagating poly(PEACMA) radical under the actual polymerization conditions. ESR‐determined rate constants of propagation and termination were 140 L/mol s and 3.4 × 104 L/mol s at 60 °C, respectively. The addition of LiCl accelerated the polymerization in N,N‐dimethylformamide but did not in DMSO. The copolymerization of PEACMA(M1) and styrene(M2) with MAIB in DMSO at 60 °C gave the following copolymerization parameters; r1 = 0.20, r2 = 0.51, Q1 = 0.59, and e1 = +0.70. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2013–2020, 2005  相似文献   

13.
Free radical copolymerization of an acyclic monoterpenoid linalool (LIN) and methyl methacrylate (MMA) in dioxan was carried out in dilatometer under an inert atmosphere of nitrogen for 90 min at 60 ± 1°C by using diphenyl selenonium 2,3,4,5‐tetraphenylcyclopentadienylide (selenonium ylide) as an initiator. The kinetic expression of the reaction is Rp ∝ [ylide]0.5[MMA]1.0[LIN]1.0. The activation energy of copolymerization was estimated to be 43.7 kJ mol?1. The formation of a functional copolymer is evidenced by spectral analysis. The copolymer was characterized by FTIR, 1H NMR, 13C NMR, DSC, and TGA analysis. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 43: 43–52, 2011  相似文献   

14.
Reversible‐addition fragmentation‐transfer (RAFT) polymerization of acrylonitrile (AN) was performed with 2‐(2‐cyano‐2‐propyl‐dodecyl)trithiocarbonate as RAFT agent and azobis(isobutyronitrile) as initiator. Linear polyacrylonitrile (Mn = 133,000 g/mol, PDI = 1.34) was prepared within 7 h in 86% isolated yield. High‐yield copolymerization with methyl methacrylate (MMA) was performed and copolymerization parameters were determined according to Kelen and Tüdös at 90 °C in ethylene carbonate yielding rAN = 0.2 and rMMA = 0.42. The molecular weights, polydispersity indices (PDIs), and MMA content of the copolymer were adjusted in a way that precursor fibers could be prepared via wet spinning. These precursor fibers had round cross‐sections and a dense morphology, showing tenacities of 40–50 cN/tex and elastic moduli of 900–1000 cN/tex at a fineness of 1 dtex and an elongation of 13–17%. Precursor fibers were oxidatively stabilized and then carbonized at different temperatures. A maximum tensile strength of 2.5 GPa was reached at 1350 °C. Thermal analysis, infrared and Raman spectroscopy, wide‐angle X‐ray scattering, scanning electron microscopy, and tensile testing were used to characterize the resulting carbon fibers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1322–1333  相似文献   

15.
3‐Ethyl‐3‐methacryloyloxymethyloxetane (EMO) was easily polymerized by dimethyl 2,2′‐azobisisobutyrate (MAIB) as the radical initiator through the opening of the vinyl group. The initial polymerization rate (Rp) at 50 °C in benzene was given by Rp = k[MAIB]0.55 [EMO]1.2. The overall activation energy of the polymerization was estimated to be 87 kJ/mol. The number‐average molecular weight (M?n) of the resulting poly(EMO)s was in the range of 1–3.3 × 105. The polymerization system was found to involve electron spin resonance (ESR) observable propagating poly(EMO) radicals under practical polymerization conditions. ESR‐determined rate constants of propagation (kp) and termination (kt) at 60 °C are 120 and 2.41 × 105 L/mol s, respectively—much lower than those of the usual methacrylate esters such as methyl methacrylate and glycidyl methacrylate. The radical copolymerization of EMO (M1) with styrene (M2) at 60 °C gave the following copolymerization parameters: r1 = 0.53, r2 = 0.43, Q1 = 0.87, and e1 = +0.42. EMO was also observed to be polymerized by BF3OEt2 as the cationic initiator through the opening of the oxetane ring. The M?n of the resulting polymer was in the range of 650–3100. The cationic polymerization of radically formed poly(EMO) provided a crosslinked polymer showing distinguishably different thermal behaviors from those of the radical and cationic poly(EMO)s. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1269–1279, 2001  相似文献   

16.
A copolymer of cholesteryl 6‐(methacryloyloxy)hexanoate and a small amount of (1‐pyrenylmethyl) 6‐(methacryloyloxy)hexanoate (Py‐C5‐MA) was prepared by free radical copolymerization. A copolymer of 1‐eicosanylmethacrylate and a small amount of Py‐C5‐MA was also prepared as a reference copolymer. A wide‐angle X‐ray diffraction pattern for an n‐hexane solution of the cholesterol(Chol)‐containing copolymer showed a peak corresponding to a spacing of 5.3 Å. In n‐hexane, the hydrodynamic radius (Rh) for the Chol‐containing copolymer (Mw = 7.8 × 104) was 8.1 nm, while that of the eicosanyl‐containing copolymer (Mw = 4.9 × 104) was 9.6 nm, Rh for the former being smaller than that for the latter, although Mw for the former was higher than that of the latter. 1H‐NMR spectra of the Chol‐containing polymer in n‐hexane‐d14 indicated a strong restriction of local motions of pendant Chol groups. Fluorescence spectra of the Chol‐containing copolymer in n‐hexane indicated that each pyrene group was isolated from others. In n‐hexane/benzene mixed solutions of the Chol‐containing polymer, the ratio of the intensity of the excimer relative to the monomer emission decreased with increasing the ratio of n‐hexane in the mixed solvent. Electron transfer from N,N‐dimethylaniline to singlet‐excited pyrene chromophores was suppressed in the Chol‐containing copolymer in n‐hexane. The pyrene chromophores exhibited a long triplet lifetime in n‐hexane. These observations led us to conclude that Chol groups formed stacks in n‐hexane, and that the pyrene chromophores were trapped in the Chol stacks, leading to the “protection” of pyrene from the bulk phase. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 47–58, 1999  相似文献   

17.
Copolymers of methyl methacrylate (MMA) and n‐butyl acrylate (n‐BA) were synthesized under atom transfer radical polymerization (ATRP) conditions. The molar infeed ratio was varied to obtain copolymers with different compositions. Methyl 2‐bromo propionate was used as the initiator with CuBr/Cu(0)/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as the catalyst at 60 °C. Molecular weight distribution was determined by gel permeation chromatography (GPC). Copolymer compositions (FM) were calculated from 1H NMR spectra. Reactivity ratios calculated with the Mao–Huglin terminal model at a high conversion were found to be rM = 2.17 and rB = 0.47. The polymerization mechanism was studied with the α‐methyl region of MMA. The backbone methylene and carbonyl carbons of both MMA and n‐BA units were found to be compositionally as well as configurationally sensitive. Complete spectral assignments were performed with the help of heteronuclear single quantum coherence (HSQC) spectroscopy along with total correlated spectroscopy (TOCSY). Further, the assignments of the carbonyl region were made with the help of heteronuclear multiple quantum coherence (HMBC) spectroscopy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1100–1118, 2005  相似文献   

18.
Controlled free‐radical copolymerization of styrene (S) and butyl acrylate (BA) was achieved by using a second‐generation nitroxide, Ntert‐butyl‐N‐[1‐diethylphosphono‐(2,2‐dimethylpropyl)] nitroxide (DEPN), and 2,2‐azobisisobutyronitrile (AIBN) at 120 °C. The time‐conversion first‐order plot was linear, and the number‐average molecular weight increased in direct proportion to the ratio of monomer conversion to the initial concentration, providing copolymers with low polydispersity. The monomer reactivity ratios obtained were rS = 0.74 and rBA = 0.29, respectively. To analyze the convenience of applying the Mayo–Lewis terminal model, the cumulative copolymer composition against conversion and the individual conversion of each monomer as a function of copolymerization time were studied. The theoretical values of the propagating radical concentration ratio were also examined to investigate the copolymerization rate behavior. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4168–4176, 2004  相似文献   

19.
4‐Methacryloyl‐2,2,6,6‐tetramethyl‐piperidine (MTMP) was applied as reactive hindered amine piperidine. Photo‐induced copolymerization of methyl methacrylate (MMA, M1) with MTMP (M2) was carried out in benzene solution at ambient temperature. The reactivity ratios for these monomers were measured by running a series of reactions at various feed ratios of initial monomers, and the monomer incorporation into copolymer was determined using 1H NMR. Reactivity ratios of the MMA/MTMP system were measured to be r1 = 0.37 and r2 = 1.14 from extended Kelen‐Tüdos method. The results show that monomer MTMP prefers homopolymerization to copolymerization in the system, whereas monomer MMA prefers copolymerization to homopolymerization. Sequence structures of the MMA/MTMP copolymers were characterized using 1H NMR. The results show that the sequence structure for the main chain of the MMA/MTMP copolymers is mainly composed of a syndiotactic configuration, only with a little heterotactic configuration. Three kinds of the sequences of rr, rr′, and lr′ in the syndiotactic configuration are found. The sequence‐length distribution in the MMA/MTMP copolymers is also obtained. For f1 = 0.2, the monomer unit of MMA is mostly separated by MTMP units, and for f1 = 0.6, the alternating tendency prevails and a large number of mono‐sequences are formed; further up to f1 = 0.8, the monomer unit of MTMP with the sequence of one unit is interspersed among the chain of MMA. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
β‐Methyl‐α‐methylene‐γ‐butyrolactone (MMBL) was synthesized and then was polymerized in an N,N‐dimethylformamide (DMF) solution with 2,2‐azobisisobutyronitrile (AIBN) initiation. The homopolymer of MMBL was soluble in DMF and acetonitrile. MMBL was homopolymerized without competing depolymerization from 50 to 70 °C. The rate of polymerization (Rp) for MMBL followed the kinetic expression Rp = [AIBN]0.54[MMBL]1.04. The overall activation energy was calculated to be 86.9 kJ/mol, kp/kt1/2 was equal to 0.050 (where kp is the rate constant for propagation and kt is the rate constant for termination), and the rate of initiation was 2.17 × 10?8 mol L?1 s?1. The free energy of activation, the activation enthalpy, and the activation entropy were 106.0, 84.1, and 0.0658 kJ mol?1, respectively, for homopolymerization. The initiation efficiency was approximately 1. Styrene and MMBL were copolymerized in DMF solutions at 60 °C with AIBN as the initiator. The reactivity ratios (r1 = 0.22 and r2 = 0.73) for this copolymerization were calculated with the Kelen–Tudos method. The general reactivity parameter Q and the polarity parameter e for MMBL were calculated to be 1.54 and 0.55, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1759–1777, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号