首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We predict the linear viscoelastic behavior of low‐density polyethylene from both the molecular‐weight distribution and the individual structure of each species in the sample. The “structure map” of the samples was derived from SEC measurements. This map is a three‐dimensional representation of the seniority distribution, and represents the probability of existence of a segment with seniority i in a molecule of molecular weight M. Moreover, results from the kinetics of the free radical polymerization of polyethylene show that the molecular weight of the segments increases according to their seniority. Finally, tube dilatation was generalized to the case of polydisperse samples. The solvent behavior of the relaxed segments was included through a continuous function of time that describes the instantaneous state of the entanglement network in the sample. The comparison between the theoretical predictions and the experimental data shows a good agreement over the whole experimental frequency range. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43:1973–1985, 2005  相似文献   

2.
Several carboxymethyl‐chitosan (CMCS) samples with different deacetylation degree and/or substituted degree were prepared from the carboxymethylation reaction of chitosan under soft conditions. The products were dissolved in standard HCl aqueous solution to carry out potentiometric titration by using NaOH as titrating solution at different ionic strengths. Then the dissociation behaviors of protonated carboxyl and amine groups were investigated under their degree of dissociation (α) and protonation constant (pKα) had been calculated. Moreover, influences of the intrinsic and extrinsic parameters on the dissociation behavior of CMCS were also considered in this article. As a result, dissociations of carboxyl and amine on CMCS exhibited unusual behaviors in comparison with carboxyl of carboxymethyl‐cellulose and amine groups of chitosan, respectively. The pKα values of carboxyl declined slightly at early dissociation stage but subsequently maintained constant. In contrast, the pKα of ammonium increased with its dissociation degree despite that there was an inflexed change on its dissociation curve. The potentiometric behavior of carboxyl was hardly affected by variation of deacetylation degree or substituted degree. However, these intrinsic parameters played more important role on dissociations of ammonium on CMCS. The ionic strength of media could bring screening effect on dissociaciation of both sorts of ionizable groups of CMCS. By increasing the ionic strength of media, screening effect on dissociations increased significantly. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1419–1429, 2008  相似文献   

3.
Dynamic mechanical analysis, DMA, is an adequate technique for characterizing the mechanical features of biomaterials, as one can use test conditions that can more closely simulate the physiological environments in which they are going to be applied. In this work it was possible to perform different tests on chitosan membranes using low/moderate hydration levels, as well in completely wet conditions. In the first case the data obtained at different relative humidity environments were rationalized under a time-humidity superposition principle, where a master curve for the storage modulus could be obtained along a wide range of frequencies. The temperature dependence of the shift factors exhibited a curvature opposite to that expected by the WLF equation, and is consistent with relaxation dynamics behavior below the glass transition. Temperature scans above room temperature in both dry and wet conditions did not reveal strong variations in the viscoelastic properties. It was possible to follow in real time the water uptake in an initially-dry membrane. During the initial strong and fast decrease of the storage modulus the loss factor exhibited a peak that should correspond to the occurrence of the glass transition resulting from the plasticization effect of water. Upon equilibration the loss factor reached similar values as for the dry material (tandelta approximately equal to 0.5). The viscoelastic characterization reported in this work for chitosan may be useful in the use of such material for a variety of biomedical applications.  相似文献   

4.
An experimental study was made of diffusion behavior of methanol through three kinds of injection‐molded plates of a polyoxymethylene (POM) copolymer with different molecular weights M at 60 °C. Fine structure of the three sample plates was also examined by wide‐angle X‐ray diffraction and small‐angle X‐ray scattering, and moreover, their dynamic properties were investigated by the dynamic mechanical analysis (DMA). It is shown that the diffusion behavior may be well explained by the one‐dimensional Fick diffusion equation with a constant diffusion coefficient, and that the steady‐state transport rate increases with increasing M. As for fine structure, the crystallinity decreases slightly, and the preferential orientation and the long period increase, with increasing M. The long period of the lamellar stacking structure increases with increasing M, and it also increases with methanol transport. In DMA, the loss tangent tan δ becomes higher after the methanol transport in the wide range of temperature around the glass transition one. These results indicate that amorphous regions serve as channels for methanol molecules in the lamellar stacking structure, leading to the conclusion that the dependence of the steady‐state transport rate on M arises from the factors of crystallinity and long period. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1234–1242, 2007  相似文献   

5.
Several new triptycene‐containing polyetherolefins were synthesized via acyclic diene metathesis (ADMET) polymerization. The well‐established mechanism, high selectivity and specificity, mild reaction conditions, and well‐defined end‐groups make the ADMET polymerization a good choice for studying systematic variations in polymer structure. Two types of triptycene‐based monomer with varying connectivities were used in the synthesis of homopolymers, block copolymers, and random copolymers. In this way, the influence of the triptycene architecture and concentration in the polymer backbone on the thermal behavior of the polymers was studied. Inclusion of increasing amounts of triptycene were found to increase the glass transition temperature, from ?44 °C in polyoctenamer to 59 °C in one of the hydrogenated triptycene homopolymers ( H‐PT2 ). Varying the amounts and orientations of triptycene was found to increase the stiffness ( H‐PT1 ), toughness ( PT11b‐PO1 ) and ductility ( PT11ran‐PO3 ) of the polymer at room temperature. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

6.
The thermoelastic behavior and equilibrium stress–strain properties of chitosan films lightly crosslinked with gluteraldehyde and swollen with water were studied. Precautions were taken to preclude changes in the swelling ratio of swollen sample films during the experiment. The results indicate that at relatively low extensions the elastic behavior of the biopolymer is entropic in origin. The equilibrium stress–strain isotherms of chitosan did not obey Mooney–Rivlin equation because of sharp increases in stress with extension ratio at high extensions. This is attributed mainly to interchain hydrogen-bonded interactions, but a possible contribution due to strain–induced crystallization cannot be ruled out. © 1997 John Wiley & Sons, Inc.  相似文献   

7.
Films of biodegradable blends based on sodium alginate for applications in agriculture, as films for the solarization of soils, were prepared and characterized in terms of the mechanical parameters and optical properties. The films analyzed in this study were transparent in the visible region and opaque in the infrared region. This ensured a micro greenhouse effect on the soil. One of the films was also characterized optically in the ultraviolet–visible–infrared region. The optical data were analyzed with a theoretical model, which was able to predict the temperature of the soil at different depths and at different times of the day. The susceptibility time of the film was compatible with its use in agriculture as a film for solarization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1205–1213, 2005  相似文献   

8.
Bio‐based nanocomposite films were successfully developed using cellulose whiskers as the reinforcing phase and chitosan as the matrix. Cellulose whiskers, with the lengths of 400 ± 92 nm and diameters of 24 ± 7.5 nm on average, were prepared by hydrolyzing cotton linter with sulfuric acid solution. The effects of whisker content on the structure, morphology and properties of the nanocomposite films were characterized by SEM, XRD, FTIR, UV‐vis spectroscopy, DMA, TG, tensile testing, and swelling experiment. The results indicated that the nanocomposites exhibited good miscibility, and strong interactions occurred between the whiskers and the matrix. With increasing whisker content from 0 to 15–20 wt %, the tensile strength of the composite films in dry and wet states increased from 85 to 120 MPa and 9.9 to 17.3 MPa, respectively. Furthermore, the nanocomposite films displayed excellent thermal stability and water resistance with the incorporation of cellulose whiskers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1069–1077, 2009  相似文献   

9.
The ability to control material properties in space and time for functionally graded viscoelastic materials makes them an asset where they can be adapted to different design requirements. The continuous microstructure makes them advantageous over conventional composite materials. Functionally graded porous structures have the added advantage over conventional functionally graded materials of offering a significant weight reduction compared to a minor drop in strength. Functionally graded porous structures of acrylonitrile butadiene styrene (ABS) had been fabricated with a solid‐state constrained foaming process. Correlating the microstructure to material properties requires a deterministic analysis of the cellular structure. This is accomplished by analyzing the scanning electron microscopy images with a locally adaptive image threshold technique based on variational energy minimization. This characterization technique of the cellular morphology is analyst independent and works very well for porous structures. Inferences are drawn from the effect of processing on microstructure and then correlated to creep strain and creep compliance. Creep is strongly correlated to porosity and pore sizes but more associated to the size than to porosity. The results show the potential of controlling the cellular morphology and hence tailoring creep strain/compliance of ABS to some desired values. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 795–803  相似文献   

10.
This article evaluates the influence of temperature on the sorption of gases in two isomers of polynorbornene. The subject polymers were stereoisomers with nearly identical bulk density and total free volume. Because of differences in the mobility of the polymer backbone, the isomers packed differently resulting in differences in the average free‐volume element size within the matrix. The influence of these differences on free‐volume element size was characterized by the heat of sorption of gases in the matrix. The most pronounced differences were observed in the isosteric heats of sorption of condensable carbon dioxide and methane in the polymer isomers. This analysis suggests that the relative space available for sorption into free‐volume elements is higher in the methyl II isomer relative to methyl III. These conclusions support the physical characterizations reported in Part I of this series suggesting that the methyl II isomer has larger average free‐volume elements but fewer of them than the methyl III isomer. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1939–1946, 2003  相似文献   

11.
In this work, three ionic liquids (ILs) differing by the length of the alkyl chain linked to their cation were incorporated in a Pebax® copolymer matrix through a solvent cast process for composition from 0 to 70 wt % IL. The copolymer/IL miscibility was investigated via IR Spectroscopy, Differential Scanning Calorimetry and Scanning Electron Microscopy. The three ILs dissolved in the copolymer soft phase for ILs content below 30 wt % whereas they formed segregated dispersed domains at higher loadings. The plasticizing effect of the ILs was examined through DSC and thermomechanical analyses. In the range of IL amount from 0 to 30 wt %, no significant differences were observed in the thermomechanical properties as a function of the IL structure. At higher IL content, the films based on 1‐ethyl‐methylimidazolium tetrafluoroborate sustained better properties. All films exhibited a good thermal stability up to 300 °C. The water sorption isotherms were modeled with GAB equation and both the kinetic and thermodynamic parameters of the sorption mechanism were investigated. A non‐monotonic evolution of the GAB parameters and diffusion coefficient as a function of the IL content was evidenced. Moreover, different behaviors were observed as a function of the IL nature and structuration within the copolymer matrix. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 811–824  相似文献   

12.
Chitosan (CS) hydrogels are receiving growing attention as adsorbents for water purification purposes. The conditions of preparation of this class of materials play a crucial in the determination of their performances; however, this aspect is often neglected in the literature. In this study, we deal with this issue, focusing on the structure‐property relationships of CS hydrogels obtained by phase inversion method. We show that the concentration of the starting solution determines the density and strength of intermolecular interactions, and that the gelation kinetics dictates the hydrogel structure at the microscale. Consequently, even subtle changes in the preparation protocol can cause significant differences in the performances of CS hydrogels in terms of mechanical properties and dye adsorption capacity. The observed trends are often neither trivial nor monotonic. Nonetheless, we demonstrate that they can be interpreted looking at the CS network structure, which can be inferred by rheological measurements. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1843–1849  相似文献   

13.
The preparation of poly(ethylene glycol‐co‐cyclohexane‐1,4‐dimethanol terephthalate)/layered silicate nanocomposites via a melt‐intercalation technique is reported. Layered silicates modified with different alkyl ammonium intercalants have been used for this purpose. A comparison is made between carefully chosen pairs of the nanocomposites, the choice depending on the cation‐exchange capacity or the intercalant concentration of the organically modified montmorillonite, to study the effects of the molecular size and molecular structure of the intercalant. The structure of the nanocomposites is characterized with wide‐angle X‐ray diffraction. The presence of well‐defined diffraction peaks and an observed increase in the interlayer spacing in the nanocomposites imply the formation of an intercalated hybrid. To investigate the viscoelastic behavior, these nanocomposites are also subjected to dynamic mechanical analysis. The dynamic mechanical properties show an increase in the storage modulus of the nanocomposites over the entire temperature range studied (except in the transition region from 68 to 78 °C) in comparison with that of the pristine polymer. The size of the intercalant molecule and the presence of functional groups capable of forming favorable interactions with the polymer govern the amount of polymer infiltrating the clay gallery space and control the increase in the modulus of the nanocomposite. The tan δ peak signifying the glass‐transition temperature shifts to lower temperatures in the nanocomposites. Interestingly, the nanocomposites show less damping than the pristine polymer. This behavior is understood in terms of the confinement of the polymer chains in the clay interlayer. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3102–3113, 2003  相似文献   

14.
The viscoelastic properties of the epoxy surface have been investigated by nanodynamic mechanical analysis (nano‐DMA). Both a Berkovich tip and a conospherical tip were used under the condition of different forces (i.e., different penetration depths) in the frequency range of 10–200 Hz. Loss tangent and storage modulus are characteristics that describe the viscoelastic properties. The effect of force frequency, penetration depth, and tip shape on the viscoelastic properties is studied and discussed according to the features of microstructures and mobility of molecular chains. The experimental results show important variations when the penetration depth is shallow (<30 nm). As the depth becomes deeper, the results tend to be stable and become almost constant over 120 nm. The two kinds of indenter tip can cause a slight difference of the storage modulus. A “master curve” of the storage modulus as a function of force frequency is established. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 281–288, 2008  相似文献   

15.
Emerging technological applications for complex polymers require insight into the dynamics of these materials from a molecular and nanostructural viewpoint. To characterize the orientational response at these length scales, we developed a versatile rheooptical Fourier transform infrared (FTIR) spectrometer by combining rheometry, polarimetry, and FTIR spectroscopy. This instrument is capable of measuring linear infrared dichroism spectra during both small‐strain dynamic deformation and large‐strain irreversible deformation over a wide temperature range. The deformation response of quenched and slow‐cooled isotactic polypropylene (iPP) is investigated. In quenched iPP, under dynamic oscillatory strain at an amplitude of ~0.1%, the dichroism from the orientation of the amorphous chains is appreciably less than that from the crystalline region. At large irreversible strains, we measured the dichroic response for 12 different peaks simultaneously and quantitatively. The dichroism from the crystalline peaks is strong as compared to amorphous peaks. In the quenched sample, the dichroism from the crystalline region saturates at 50% strain, followed by a significant increase in the amorphous region dichroism. This is consistent with the notion that the crystalline regions respond strongly before the yield point, whereas the majority of postyielding orientation occurs in the amorphous region. Our results also suggest that the 841 cm?1 peak may be especially sensitive to the ‘smectic’ region orientation in the quenched sample. The response of the slow‐cooled sample at 70 °C is qualitatively similar but characterized by a stronger crystalline region dichroism and a weaker amorphous region dichroism, consistent with the higher crystallinity of this sample, and faster chain relaxation at 70 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2539–2551, 2002  相似文献   

16.
The electric transport properties of Nafion membranes are investigated by impedance spectroscopy (IS) and correlated with small angle X‐ray scattering (SAXS). Detailed IS measurements in a wide range of temperature and frequencies (f) allowed separating contributions from different charge carriers in Nafion. At controlled relative humidity and temperature, Nafion IS spectrum exhibits at T > 160 °C two distinct frequency‐independent conductivities occurring at high f ~ 106 Hz and low f < 10?2 Hz. Such IS measurements were combined with time‐dependent SAXS measurements under applied dc electric potential, which provided compelling evidence that the low‐f dc conductivity is related to the motion of protons via ion‐hopping in hydrated Nafion membranes. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 822–828  相似文献   

17.
High molecular weight, soluble, amorphous, partially aliphatic polyimides were successfully synthesized using an ester acid high‐temperature solution imidization route, which allows one to control desired glass‐transition (Tg) and processing temperatures. This method involves the prereaction of aromatic dianhydrides with ethanol and a tertiary amine catalyst to form ester acids, followed by the addition of diamines. Subsequent thermal reaction forms fully cyclized polyimides. This reaction pathway eliminates the need for anhydrous solvents and overcomes the problem of salt formation commonly observed for nucleophilic, more‐basic aliphatic amines when utilizing the traditional polyamic acid synthesis route. The molar ratio of aromatic‐to‐aliphatic diamines was varied to generate a series of copolyimides with the chosen dianhydride and tailor the physical properties for specific adhesive applications. This series of copolyimides was characterized by their molecular weight, Tg, thermal stability, coefficient of thermal expansion, refractive index, and dielectric constant. Structure‐property relationships were established. The γ and β sub‐Tg viscoelastic properties were researched to understand their molecular origins. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1503–1512, 2002  相似文献   

18.
Two series of tensile tests with constant crosshead speeds (ranging from 5 to 200 mm/min) and tensile relaxation tests (at strains from 0.03 to 0.09) were performed on low‐density polyethylene in the subyield region of deformations at room temperature. Mechanical tests were carried out on nonannealed specimens and on samples annealed for 24 h at the temperatures T = 50, 60, 70, 80, and 100 °C. Constitutive equations were derived for the time‐dependent response of semicrystalline polymers at isothermal deformations with small strains. A polymer is treated as an equivalent heterogeneous network of chains bridged by temporary junctions (entanglements, physical crosslinks, and lamellar blocks). The network is thought of as an ensemble of mesoregions linked with each other. The viscoelastic behavior of a polymer is modeled as a thermally induced rearrangement of strands (separation of active strands from temporary junctions and merging of dangling strands with the network). The viscoplastic response reflects sliding of junctions in the network with respect to their reference positions driven by macrostrains. Stress‐strain relations involve five material constants that were found by fitting the observations. Fair agreement was demonstrated between the experimental data and the results of numerical simulation. This study focuses on the effects of strain rate and annealing temperature on the adjustable parameters in the constitutive equations. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1638–1655, 2003  相似文献   

19.
贺爱华 《高分子科学》2016,34(2):174-184
The effects of weight-average molecular(Mw), molecular weight distribution(MWD), and isotacticity on the linear viscoelastic behavior of polybutene-1 melts are studied. It is observed that the linear viscoelastic region becomes slightly narrower with increasing frequency. In frequency sweeps, the transition of the polymer melts flow from Newtonian flow to power-law flow can be observed. The melts with higher Mw and/or broader MWD, as well as higher isotacticity exhibit higher complex viscosity, zero shear viscosity, viscoelasticity moduli, relaxation modulus, broader transition zone, while lower critical shear rate, non-Newtonian index, and the frequency at which elasticity begins to play an important role. The relationship of zero shear viscosity on Mw has been established, which agrees with the classical power law. Furthermore, it is found that the cross-over frequency decreases with increasing Mw and the cross-over modulus increases with narrowing MWD.  相似文献   

20.
In this work, by adopting the united atom model of cis‐1,4‐poly(butadiene) (PB), we systemically investigate the effect of the chain structure on the glass transition temperature (Tg) and the viscoelastic property of PB system. First, we analyze the atom translational mobility, bond reorientation dynamics, torsional dynamics, conformational transition rate, and dynamic heterogeneity of the PB chains with different chain structures in detail by determining the corresponding Tg. In addition, our results clearly indicate that with the decrease of the amount of the free end atoms of PB via the end‐linking method, the mobility of the PB chains quickly decreases. As a result, the Tg of the PB chains gradually increases. Depending on the chain structure and the calculation method, the Tg of the PB chains varies from 154 to 240 K. In addition, the temperature dependence of the dynamic properties has different Arrhenius behaviors above and below Tg. The calculated activation energy varies from 7.37 to 16.37 KJ/mol for different chain structures above Tg, which can be compared with those for other polymers. In addition, through the end‐linking approach the strong interaction between the PB chains improves the storage modulus G′ and the loss modulus . Meanwhile, the immobility of the free end atoms effectively reduces the friction loss of the chains under the shear field, which is reflected by the low loss factor . In summary, this work can further help to understand the effect of the chain structure on the dynamic properties of the PB chains. Meanwhile, it provides an effective approach to reduce the energy loss during the dynamic periodic deformation, which can cut the fuel consumption via the end‐linking method. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1005–1016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号