首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three series of semiflexible and rigid main‐chain polyesters containing photoreactive mesogenic units derived from p‐phenylenediacrylic acid (PDA) and cinnamic acid have been synthesized by high‐temperature polycondensation. The thermal and mesomorphic properties of the polymers have been determined. The photochemical behavior of polymer P‐[1]‐T, which contains a PDA unit, has been studied both in solution and in films. In solution, [2+2] photocycloaddition, E/Z photoisomerization, and photo‐Fries rearrangement can take place. In contrast, the dominant process in spin‐coated films is the [2+2] photocycloaddition reaction, which causes crosslinking of the polymer. In films, the photochemistry and induction of anisotropy are strongly influenced by the aggregation of the PDA phenylester unit. A dichroism of about 0.2 has been induced in films by irradiation with linearly polarized UV light, and thus the capability of these films to induce optical anisotropy and align liquid crystals has been demonstrated. Liquid‐crystalline cells have been made with polarized irradiated films of P‐[1]‐T as aligning layers. A commercial liquid‐crystalline mixture has been used for this study, and a similar liquid‐crystalline order determined by polarized Fourier transform infrared to a commercial cell with rubbed polyimide as an aligning layer has been detected. Because of crosslinking of the irradiated P‐[1]‐T photoaligning layer, the photoinduced anisotropy is stable at high temperatures, and the liquid‐crystalline molecules are insoluble in the irradiated polymer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4907–4921, 2005  相似文献   

2.
Ferrocene‐based polymers are characterized by their electrochemical activity, good redox properties, thermal, photochemical stability, and liquid crystallinity, and thus they have various applications in different fields. A comprehensive investigation on the synthesis and properties of three novel main‐chain ferrocene‐based polyesters with azobenzene in the side chain (MFPAS) was carried out. The main‐chain ferrocene‐based polyester, poly(N‐phenyldiethanolamine 1,1′‐ferrocene dicarboxylate (PPFD), was synthesized via the solution polycondensation reaction of 1,1′‐ferrocenedicarbonyl chloride with phenyldiethanolamine (PDE). The novel MFPAS were synthesized via the post‐polymerization azo‐coupling reaction of PPFD with three different 4‐substituted anilines including 4‐nitroaniline, 4‐aminobenzoic acid, and 4‐aminobenzonitrile to produce 4‐nitrophenylazo‐functionalized‐PPFD (PPFD‐NT), 4‐carboxyphenylazo‐functionalized‐PPFD (PPFD‐CA), and 4‐cyanophenylazo‐functionalized‐PPFD (PPFD‐CN), respectively. All the synthesized polymers were characterized by 1H NMR spectroscopy, Fourier transform infrared spectroscopy, and UV–visible spectroscopy. In addition, powder X‐ray diffraction patterns were measured for the synthesized polymers. The photoisomerization of the MFPAS was studied. The thermal properties of the MFPAS were studied using thermogravimetric analysis and differential scanning calorimetry. PPFD‐CA and PPFD‐CN were found to be more thermally stable than PPFD‐NT. Finally, the liquid‐crystalline properties of PPFD and the MFPAS were examined using polarized optical microscope. It was found that all the polymers possessed nematic phases and exhibited textures with schlieren disclinations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
New polymers for second‐order nonlinear optical (NLO) applications were synthesized and characterized. They were distinguished by the presence of chromophore groups, with various molecular hyperpolarizability values, used as pendants on substantially rigid backbones. The polymers were prepared through the reaction of tolylene‐2,4‐diisocyanate, or a suitable alkyloxyphthaloyl dichloride, with the N,N‐diethanol‐4‐(phenyl) group azo‐linked to a nitrofluorenone, nitrostilbene, nitrooxadiazole, or nitrothiadiazole moiety. The polymers exhibited good thermal stability, high glass‐transition temperatures, and an absence of crystallinity. The second‐order NLO properties of thin, transparent poled films, prepared by spin coating and thermal corona poling, were investigated for some of the polymers. The second harmonic coefficients, ranging between 18 and 25 pm/V, depended more on the alignment of the chromophore groups along the direction of the poling field than on their molecular hyperpolarizability. The temporal stability of the NLO properties of the polymers was also investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3013–3022, 2004  相似文献   

4.
A series of new thermoplastic polyesters based on 3,4‐ethylenedioxythiophene (EDOT) with flexible aliphatic spacers have been synthesized and characterized for the first time. The thermal properties of these polyesters based on EDOT are comparable to those of conventional polyesters based on the 1,4‐phenyl unit, indicating that EDOT is a viable replacement for the phenyl units. The glass‐transition and melting‐transition temperatures decrease monotonically with an increase in the spacer length. Theoretical calculations have revealed that the core angle for EDOT is comparable to that of unsubstituted thiophene and hence should be compatible with the formation of the mesophase. This has been confirmed experimentally by the synthesis of a main‐chain, thermotropic, liquid‐crystalline polyester based on EDOT that exhibits fluid birefringence. In fact, this is the first report in which a main‐chain, liquid‐crystalline polymer based on 3,4‐disubstituted thiophene has been successfully designed and synthesized. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3479–3486, 2006  相似文献   

5.
Nonlinear optical (NLO) rigid main‐chain polyesters containing azobenzene mesogens with high thermal and temporal stabilities were synthesized from derivatives of hydroxyphenylazobenzoic acid. The NLO properties of the homopolymer, poly[4‐(4‐hydroxy‐3‐methyl phenyl)azo]benzoic acid, and copolymers of 4‐[(4‐hydroxy‐3‐methylphenyl)azo]benzoic acid, 4‐[(4‐hydroxy‐2‐methylphenyl)azo]benzoic acid, and 4‐[(4‐hydroxy‐2‐pentadecyl phenyl)azo]benzoic acid (PSCpHBA) with p‐HBA were measured by the Maker fringe technique. The thermal and liquid‐crystalline (LC) phase behaviors of the polymers were examined by differential scanning calorimetry, a thermal‐stimulated polarization current, and polarized light microscopy. The polymers except PSCpHBA exhibited nematic‐threaded and Schlieren textures. The LC orientations give rise to an enhanced NLO response. The polymers had high thermal and temporal stabilities for second‐harmonic generation activity because of their rigid aromatic backbone. This study suggests that the rigid aromatic main chain exhibiting an LC phase is a promising simple method to synthesize highly stable NLO polymers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1527–1535, 2003  相似文献   

6.
Methacrylate polymers containing different molar contents of nonlinear optical (NLO) active molecular segments based on 2‐[4‐(N‐methyl,N‐hydroxyethylamino)phenylazo]‐phenyl‐6‐nitrobenzoxazole chromophores were synthesized, and their phase behavior and second‐order NLO properties were investigated. Polymers containing 6–17 mol % chromophore segments allowed the preparation of amorphous and optically clear thin films. Some mesomorphic structuration was exhibited by a polymer with 33 mol % chromophoric units. However, this feature did not prevent the possibility of investigating the NLO properties. Nonlinear resonance‐enhanced d33 coefficients were determined by second harmonic generation experiments on spin‐coated, corona‐poled thin films at λ = 1064 nm. Values ranging from 40 to 60 pm/V were measured with increasing chromophore molar contents. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1841–1847, 2003  相似文献   

7.
Acrylate‐methylmethacrylate copolymers have been synthesized for nonlinear optical applications. Acrylate monomer units are characterized by the presence in the side chain of phenylbenzoxazole groups containing electron donor‐electron acceptor substituents. The phase behavior of all polymers has been investigated by DSC, X‐ray diffraction and polarizing microscopy: two of them exhibit liquid crystalline behavior of smectic type. For four polymers, nonlinear optical properties have been examined by second harmonic generation measurements on thin films (∼ 1 μm thickness) electrically poled by corona discharge. Second order susceptibility coefficients d33 and average relaxation times 〈τ〉, relative to the time stability of the chromophore poling, have been measured. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 603–608, 1999  相似文献   

8.
A series of polyesters with π‐conjugated donor–acceptor segments was synthesized by the condensation of azobenzene‐4,4′‐dicarbonylchloride with 1,4:3,6‐dianhydro‐D‐sorbitol ([α] = + 42.5°) and biphenolic chromophores, bis(4‐hydroxyphenylazo)‐2,2′‐dinitrodiphenylmethane and bis(4‐hydroxyphenylazo)‐2,2′‐dinitrodiphenylsulfone. The polymers were characterized by spectral methods (IR, ultraviolet–visible, and NMR), thermal methods (thermogravimetry and differential scanning calorimetry), wide‐angle X‐ray scattering, and polarimetry. The polymers containing isosorbide units were optically active and crystalline. They exhibited glass‐transition temperature values between 100 and 160 °C and were stable up to 400 °C. The second‐harmonic generation (SHG) efficiency of the polymers was experimentally verified by a powder‐reflection technique with 2‐methyl‐4‐nitroaniline as a reference. The SHG efficiencies of the polymers were compared to those of the chromophores and explained as a function of the percentage of chiral composition. The hyperpolarizability β values were also determined by a two‐level model solvatochromic method and computational methods. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2868–2877, 2002  相似文献   

9.
A new series of rigid polyesters and semiflexible polyethers were synthesized from 4,4″‐dihydroxy‐5′‐phenyl or anthracenyl‐m‐terphenyl. The polymers were characterized by viscometry, Fourier transform infrared, NMR, X‐ray, differential scanning calorimetry, thermomechanical analysis, thermogravimetric analysis, ultraviolet–visible, and luminescence spectroscopy. The polyesters were amorphous, whereas some of the polyethers showed a low degree of crystallinity. All the polymers displayed an enhanced solubility even in 1,1,2,2‐tetrachloroethane and tetrahydrofuran. The glass‐transition temperatures were 123–146 °C for the polyesters and 45–117 °C for the polyethers. The polymers were stable up to 213–340 °C and afforded anaerobic char yields of 36–62% at 800 °C. Their optical properties were investigated both in solution and in the solid state. They showed ultraviolet fluorescence, violet‐blue fluorescence, or both with emission maxima at 333–487 nm. The polymers with anthracenyl pendent groups exhibited higher fluorescence quantum yields and emission maxima redshifted compared with the corresponding polymers with phenyl pendent groups. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2381–2391, 2000  相似文献   

10.
A series of new AB type azobenzene monomers based on various substituted phenols and higher order fused/extended aromatic rings were synthesized and their hyperpolarizability tensor β determined by hyper‐Rayleigh scattering (HRS) measurement in methanol. The electron donor (? OH) and acceptor units (? COOH) were kept constant in the series, but the effective conjugation length was varied by varying the number and position of substituents as well as the number of aromatic rings. The effect of substitution of the phenolic ring on the β value was investigated and it was found to range from 15 × 10?30 to 42 × 10?30 esu. The effect of intramolecular hydrogen bonding on the nonlinear optical (NLO) property was also examined. The nonlinearity was in the following order of phenol derivative: α‐naphthol > phenyl phenol > 2,6‐dimethyl phenol > o‐cresol > cardanol > phenol > β‐naphthol. The unusually low values for the β‐naphthol‐based chromophore compared with its isomer (α‐naphthol) could be rationalized based on hydrogen bonding of the o‐hydroxyl group with the β nitrogen of the azo bridge. These azobenzene NLO chromophoric monomers were polymerized to form main‐chain polymers with a head to tail structure. The polymers had high thermal stability and rather low solubility in common organic solvents. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4455–4468, 2005  相似文献   

11.
The hyperbranched polytriazole (hb‐PTA) containing second‐order nonlinear optical chromophore was synthesized through “A2 + B3” approach based on “click reaction.” Its corresponding linear analogue (l‐PTA) was prepared for comparison. The hb‐PTA has better solubility in common organic solvents than the l‐PTA. Both the polymers exhibit good thermal stability with 5% weight loss temperatures over 260 °C. The poled film of hb‐PTA exhibits much higher second‐harmonic coefficient (96.8 pm/V) than that of l‐PTA (23.5 pm/V). The three‐dimensional spatial isolation effect resulting from the highly branched structure and the crosslinking of the terminal acetylene groups at moderate temperature play important roles in the enhancement of optical nonlinearity. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1140–1148, 2008  相似文献   

12.
The divergent dendronization of an ?‐caprolactone‐based polymer has been performed to provide access to dendronized polymers with sufficient biocompatibility and degradability for use as drug‐delivery scaffolds. The synthesis was performed through the tin(II) 2‐ethylhexanoate‐catalyzed polymerization of a γ‐functionalized ?‐caprolactone monomer, followed by the divergent growth of pendant polyester dendrons at each repeat unit. The resulting dendronized polymers were obtained up to the fourth generation with molecular weights as high as 80,000 Da and with polydispersities between 1.11 and 1.22. The fourth‐generation hydroxyl‐terminated dendronized polymer was degradable under a variety of aqueous conditions. A comparison of the dendronization approach with a procedure involving the ring‐opening polymerization of a second‐generation dendritic macromonomer reveals that the former procedure is best suited for the preparation of this family of dendronized polyesters because it requires shorter reaction times and affords materials with higher degrees of polymerization. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3563–3578, 2004  相似文献   

13.
Azobenzene monomeric precursors bearing piperazine as donor moiety with different withdrawing groups and derived side chain polymethacrylates have been prepared and characterized. Monomers having terminal cyano or nitro groups, and the corresponding polymers, exhibited smectic A phases. Linear and nonlinear optical properties of every monomer and thin films of the cyano polymer ( pol‐PZ‐CN ) have been also studied. UV‐vis spectroscopy revealed out‐of‐plane orientation in the as prepared films, as confirmed by waveguide refractive index measurements. Moreover, absorption spectra indicated the presence of azo aggregates in these films. The initial molecular arrangement has been modified by applying thermal annealing within the mesophase range and UV‐blue irradiation. Although thermal annealing resulted in a significant amplification of the out‐of‐plane optical anisotropy due to thermotropic self‐organization of side chain azo moieties, irradiation with 440 nm light induced some disruption of aggregates. The nonlinear optical response of Corona poled films has been studied by second harmonic generation measurements, and the influence of the molecular arrangement on the nonlinear dij coefficients has been analyzed. The more efficient poling corresponded to preirradiated films. In any case, a noticeable degree of polar order (70% of the initial d33 value) remained for several months after the poling in films kept at RT. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 232–242, 2010  相似文献   

14.
In this article, a facile route was designed to prepare four new hyperbranched poly(arylene‐ethynylene)s containing azo‐chromophore moieties through one‐pot “A2+B3” approach via simple Sonogashira coupling reaction. The polymers were all soluble in organic solvents and demonstrated good nonlinear optical (NLO) properties, because of the three‐dimensional spatial isolation effect of these hyperbranched polymers. Due to the different B3‐type comonomer, the self‐assembly effect of pentafluoroaromatic in the interior of these polymers were different, leading to the different trends of the NLO activities. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
An investigation into the preparation of poly(9‐alkyl‐9H‐carbazole‐3,6‐diyl)s with palladium catalyzed cross‐coupling reactions of 3‐halo‐6‐halomagnesio‐9‐alkyl‐9H‐carbazoles, generated in situ from their corresponding 3,6‐diiodo‐ and 3,6‐dibromo‐derivatives was undertaken. Monomers with a range of alkyl group substituents with different steric requirements were investigated and their effects on the polymerization were studied. The effects of the nature of halogen substituents on the polymerization reaction were also investigated. Structural analysis of the polymers revealed exclusive 3,6‐linkage between consecutive carbazole repeat units on the polymer chains. The physical properties of these polymers were investigated with spectroscopic, thermal gravimetric analysis, and electrochemical studies. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6041–6051, 2004  相似文献   

16.
Nonlinear optical vinyl polymers with high glass transition temperature (Tg) were prepared by the functionalization of a fluorinated acrylate‐methyl vinyl isocyanate copolymer. A modified pathway to obtain a thiophene bridged chromophore was worked out. Poled films of the polymers show a fairly high and stable nonlinear optical response, even at elevated temperatures.

The thiophene‐bridged chromophore, based on a substituted dicyanomethylene‐dihydrofuran acceptor, synthesized here.  相似文献   


17.
Low molar mass hyperbranched polyesters were prepared by polycondensation of 1,1,1‐tris(hydroxymethyl)ethane and various dimethyl esters of aliphatic dicarboxylic acids in bulk. The usefulness of nontoxic bismuth salts as transesterification catalysts for these polycondensations was studied. The maximum conversion increased, and the reaction time decreased in the following sequence of increasing reactivity: dimethyl sebacate < adipate < glutarate < succinate. Regardless of the monomer combination, gelation occurred at conversions > 91.5%. The hyperbranched structure was proven by 1H NMR spectroscopy and the absence of cyclic elements by MALDI‐TOF mass spectrometry. Quantitative acylation of all CH2OH groups was achieved with an excess of acetic anhydride or methycrylic anhydride. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 231–238, 2009  相似文献   

18.
Polyesters PEs containing high content of fluorene units in their backbones were synthesized from 9,9‐diarene‐substituted fluorene diols ( 1 ) and fluorene‐based diacid chlorides ( 2 ) by high temperature polycondensation at 185 °C in diphenyl ether. The molecular weights of the polyesters PE1‐PE5 were in a range of Mw 25,000–165,000. The polyesters displayed their high thermostability: the glass transition temperatures (Tg) by differential scanning calorimetry analysis ranged from 109 to 217 °C, while the 10% weight loss temperatures (Td10) measured by thermogravimetric analysis were over 400 °C in nitrogen and 395 °C in air. The polyesters had good solubility in most common organic solvents such as chloroform and toluene and gave tough, transparent and flexible cast films. The transmittance of the films was over 80% in the wavelength range from 450 to 700 nm in any PEs . The PEs exhibited high refractive index values around 1.65, while they had very low degree of birefringence. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2549–2556, 2008  相似文献   

19.
The synthesis, aggregation, and optical properties of a chiral, regioregular polythiophene, substituted with a conjugated substituent, are described. The polymer was prepared using a Stille coupling reaction. The fact that the side‐chain contributes to the absorption (UV‐vis), emission (fluorescence), and redox behavior (cyclic voltammetry) of the material demonstrates that the substituent contributes to the electronic properties. It was shown that the conjugated side‐chain chirally stacks in conditions in which the polymer backbone aggregates, which demonstrates the ability of conjugated polymers to induce a (chiral) lamellar organization of conjugated moieties, present in their side‐chain. The aggregation of both the side‐chain and the backbone was monitored using UV‐vis and CD spectroscopy. Finally, it is shown that the conjugated side‐chain can selectively be oxidized, without oxidizing the polythiophene backbone. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1891–1900, 2009  相似文献   

20.
The purpose of this study was to investigate the influence of cross‐linking on the thermomechanical behavior of liquid‐crystalline elastomers (LCEs). Main‐chain LCE networks were synthesized via a thiol‐acrylate Michael addition reaction. The robust nature of this reaction allowed for tailoring of the behavior of the LCEs by varying the concentration and functionality of the cross‐linker. The isotropic rubbery modulus, glass transition temperature, and strain‐to‐failure showed strong dependence on cross‐linker concentration and ranged from 0.9 MPa, 3 °C, and 105% to 3.2 MPa, 25 °C, and 853%, respectively. The isotropic transition temperature (Ti) was shown to be influenced by the functionality of the cross‐linker, ranging from 70 °C to 80 °C for tri‐ and tetra‐functional cross‐linkers. The magnitude of actuation can be tailored by controlling the amount of cross‐linker and applied stress. Actuation increased with increased applied stress and decreased with greater amounts of cross‐linking. The maximum strain actuation achieved was 296% under 100 kPa of bias stress, which resulted in work capacity of 296 kJ/m3 for the lowest cross‐linked networks. Overall, the experimental results provide a fundamental insight linking thermomechanical properties and actuation to a homogenous polydomain nematic LCE networks with order parameters of 0.80 when stretched. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 157–168  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号