首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we present a weaker version of the class of generalized positive subdefinite matrices introduced by Crouzeix and Komlósi [J.P. Crouzeix and S. Komlósi, The Linear Complementarity Problem and the Class of Generalized Positive Subdefinite Matrices, Applied Optimization, Vol. 59, Kluwer, Dordrecht, 2001, pp. 45–63], which is new in the literature, and obtain some properties of weak generalized positive subdefinite (WGPSBD) matrices. We show that this weaker class of matrices is also captured by row-sufficient matrices introduced by Cottle et al. [R.W. Cottle, J.S. Pang, and V. Venkateswaran, Sufficient matrices and the linear complementarity problem, Linear Algebra Appl. 114/115 (1989), pp. 231–249] and show that for WGPSBD matrices under appropriate assumptions, the solution set of a linear complementarity problem is the same as the set of Karush–Kuhn–Tucker-stationary points of the corresponding quadratic programming problem. This further extends the results obtained in an earlier paper by Neogy and Das [S.K. Neogy and A.K. Das, Some properties of generalized positive subdenite matrices, SIAM J. Matrix Anal. Appl. 27 (2006), pp. 988–995].  相似文献   

2.
In this article we focus on perturbation bounds of unitary polar factors in polar decompositions for rectangular matrices. First we present two absolute perturbation bounds in unitarily invariant norms and in spectral norm, respectively, for any rectangular complex matrices, which improve recent results of Li and Sun (SIAM J. Matrix Anal. Appl. 2003; 25 :362–372). Secondly, a new absolute bound for complex matrices of full rank is given. When ‖A ? Ã2 ? ‖A ? ÃF, our bound for complex matrices is the same as in real case. Finally, some asymptotic bounds given by Mathias (SIAM J. Matrix Anal. Appl. 1993; 14 :588–593) for both real and complex square matrices are generalized. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
A matrix is said to be stable if the real parts of all the eigenvalues are negative. In this paper, for any matrix An, we give some sufficient and necessary conditions for the stability of superoptimal preconditioner EU(An) proposed by Tyrtyshnikov (SIAM J. Matrix Anal. Appl. 1992; 13 :459–473). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
We generalize and extend results of the series of papers by Greenbaum and Strako? (IMA Vol Math Appl 60:95–118, 1994), Greenbaum et al. (SIAM J Matrix Anal Appl 17(3):465–469, 1996), Arioli et al. (BIT 38(4):636–643, 1998) and Duintjer Tebbens and Meurant (SIAM J Matrix Anal Appl 33(3):958–978, 2012). They show how to construct matrices with right-hand sides generating a prescribed GMRES residual norm convergence curve as well as prescribed Ritz values in all iterations, including the eigenvalues, and give parametrizations of the entire class of matrices and right-hand sides with these properties. These results assumed that the underlying Arnoldi orthogonalization processes are breakdown-free and hence considered non-derogatory matrices only. We extend the results with parametrizations of classes of general nonsingular matrices with right-hand sides allowing the early termination case and also give analogues for the early termination case of other results related to the theory developed in the papers mentioned above.  相似文献   

5.
In this paper, we address the accuracy of the results for the overdetermined full rank linear least‐squares problem. We recall theoretical results obtained in (SIAM J. Matrix Anal. Appl. 2007; 29 (2):413–433) on conditioning of the least‐squares solution and the components of the solution when the matrix perturbations are measured in Frobenius or spectral norms. Then we define computable estimates for these condition numbers and we interpret them in terms of statistical quantities when the regression matrix and the right‐hand side are perturbed. In particular, we show that in the classical linear statistical model, the ratio of the variance of one component of the solution by the variance of the right‐hand side is exactly the condition number of this solution component when only perturbations on the right‐hand side are considered. We explain how to compute the variance–covariance matrix and the least‐squares conditioning using the libraries LAPACK (LAPACK Users' Guide (3rd edn). SIAM: Philadelphia, 1999) and ScaLAPACK (ScaLAPACK Users' Guide. SIAM: Philadelphia, 1997) and we give the corresponding computational cost. Finally we present a small historical numerical example that was used by Laplace (Théorie Analytique des Probabilités. Mme Ve Courcier, 1820; 497–530) for computing the mass of Jupiter and a physical application if the area of space geodesy. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The topic of this paper is the convergence analysis of subspace gradient iterations for the simultaneous computation of a few of the smallest eigenvalues plus eigenvectors of a symmetric and positive definite matrix pair (A,M). The methods are based on subspace iterations for A ? 1M and use the Rayleigh‐Ritz procedure for convergence acceleration. New sharp convergence estimates are proved by generalizing estimates, which have been presented for vectorial steepest descent iterations (see SIAM J. Matrix Anal. Appl., 32(2):443‐456, 2011). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A direct algorithm for the solution to the affine two‐sided obstacle problem with an M‐matrix is presented. The algorithm has the polynomial bounded computational complexity O(n3) and is more efficient than those in (Numer. Linear Algebra Appl. 2006; 13 :543–551). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
In this note, as a generalization of the preconditioner presented by Greif et al. (SIAM J Matrix Anal Appl 27:779–792, 2006), we consider a set of augmentation block Schur complement preconditioners for solving saddle point systems whose coefficient matrices have singular (1,1) blocks. The spectral properties of the preconditioned matrices are analyzed and an optimal preconditioner is derived.  相似文献   

9.
The perturbation results for the solutions of two linearly perturbed algebraic Riccati equations are derived. We generalize the results of Sun [SIAM J. Matrix Anal. Appl., 19 (1998):39–65] for continuous (CARE) and discrete (DARE) algebraic Riccati equations, respectively. The results are illustrated by numerical examples.  相似文献   

10.
We revisit the shift‐and‐invert Arnoldi method proposed in [S. Lee, H. Pang, and H. Sun. Shift‐invert Arnoldi approximation to the Toeplitz matrix exponential, SIAM J. Sci. Comput., 32: 774–792, 2010] for numerical approximation to the product of Toeplitz matrix exponential with a vector. In this approach, one has to solve two large‐scale Toeplitz linear systems in advance. However, if the desired accuracy is high, the cost will be prohibitive. Therefore, it is interesting to investigate how to solve the Toeplitz systems inexactly in this method. The contribution of this paper is in three regards. First, we give a new stability analysis on the Gohberg–Semencul formula (GSF) and define the GSF condition number of a Toeplitz matrix. It is shown that when the size of the Toeplitz matrix is large, our result is sharper than the one given in [M. Gutknecht and M. Hochbruck. The stability of inversion formulas for Toeplitz matrices, Linear Algebra Appl., 223/224: 307–324, 1995]. Second, we establish a relation between the error of Toeplitz systems and the residual of Toeplitz matrix exponential. We show that if the GSF condition number of the Toeplitz matrix is medium‐sized, then the Toeplitz systems can be solved in a low accuracy. Third, based on this relationship, we present a practical stopping criterion for relaxing the accuracy of the Toeplitz systems and propose an inexact shift‐and‐invert Arnoldi algorithm for the Toeplitz matrix exponential problem. Numerical experiments illustrate the numerical behavior of the new algorithm and show the effectiveness of our theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Golub et al. (Linear Algebra Appl. 88/89 (1987) 317–327), J.Demmel (SIAM J. Numer. Anal. 24 (1987) 199–206), generalized the Eckart-Young-Mirsky (EYM) theorem, which solves the problem of approximating a matrix by one of lower rank with only a specific rectangular subset of the matrix allowed to be changed. Based on their results, this paper presents perturbation analysis for the EYM theorem and the constrained total least squares problem (CTLS).  相似文献   

12.
By applying the multiple quotient singular value decomposition QQQQQ-SVD, we study the block independence in g-inverse and reflexive inner inverse of 2× 2 partitioned matrices, and prove a conjecture in [Yiju Wang, SIAM J. Matrix Anal. Appl., 19(2), 407-415(1998)].  相似文献   

13.
In this note, we present perturbation analysis for the total least squares (Tls) problems under the genericity condition. We review the three condition numbers proposed respectively by Zhou et al. (Numer. Algorithm, 51 (2009), pp. 381–399), Baboulin and Gratton (SIAM J. Matrix Anal. Appl. 32 (2011), pp. 685–699), Li and Jia (Linear Algebra Appl. 435 (2011), pp. 674–686). We also derive new perturbation bounds.  相似文献   

14.
In this paper, some optimal inclusion intervals of matrix singular values are discussed in the set ΩA of matrices equimodular with matrix A. These intervals can be obtained by extensions of the Gerschgorin‐type theorem for singular values, based only on the use of positive scale vectors and their intersections. Theoretic analysis and numerical examples show that upper bounds of these intervals are optimal in some cases and lower bounds may be non‐trivial (i.e. positive) when PA is a H‐matrix, where P is a permutation matrix, which improves the conjecture in Reference (Linear Algebra Appl 1984; 56 :105‐119). Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
This note provides a new approach to a result of Foregger [T.H. Foregger, On the relative extrema of a linear combination of elementary symmetric functions, Linear Multilinear Algebra 20 (1987) pp. 377–385] and related earlier results by Keilson [J. Keilson, A theorem on optimum allocation for a class of symmetric multilinear return functions, J. Math. Anal. Appl. 15 (1966), pp. 269–272] and Eberlein [P.J. Eberlein, Remarks on the van der Waerden conjecture, II, Linear Algebra Appl. 2 (1969), pp. 311–320]. Using quite different techniques, we prove a more general result from which the others follow easily. Finally, we argue that the proof in [Foregger, 1987] is flawed.  相似文献   

16.
17.
《Optimization》2012,61(11):1895-1922
ABSTRACT

In this paper, we introduce a concept of A-sequences of Halpern type where A is an averaging infinite matrix. If A is the identity matrix, this notion become the well-know sequence generated by Halpern's iteration. A necessary and sufficient condition for the strong convergence of A-sequences of Halpern type is given whenever the matrix A satisfies some certain concentrating conditions. This class of matrices includes two interesting classes of matrices considered by Combettes and Pennanen [J. Math. Anal. Appl. 2002;275:521–536]. We deduce all the convergence theorems studied by Cianciaruso et al. [Optimization. 2016;65:1259–1275] and Muglia et al. [J. Nonlinear Convex Anal. 2016;17:2071–2082] from our result. Moreover, these results are established under the weaker assumptions. We also show that the same conclusion remains true under a new condition.  相似文献   

18.
In the paper the unknown distribution function is approximated with a known distribution function by means of Taylor expansion. For this approximation a new matrix operation — matrix integral — is introduced and studied in [PIHLAK, M.: Matrix integral, Linear Algebra Appl. 388 (2004), 315–325]. The approximation is applied in the bivariate case when the unknown distribution function is approximated with normal distribution function. An example on simulated data is also given.   相似文献   

19.
For ann x n real matrixX, let ?(X)=X ο (X ?1) T , where ο stands for the Hadamard (entrywise) product. SupposeA, B, C andD aren x n real nonsingular matrices, and among them there are at least one solutions to the equation ?(X)=1/nJ n . An equivalent condition which enable $M = \left( {\begin{array}{*{20}c} A & B \\ C & D \\ \end{array} } \right)$ become a real solution to the equation ?(X)=1/2nJ 2n , is given. As applications, we get new real solutions to the matrix equation ?(X)-1/2nJ 2n by applying the results of Zhang, Yang and Cao [SIAM. J. Matrix Anal. Appl, 21 (1999), pp: 642–645] and Chen [SIAM. J. Matrix Anal. Appl, 22 (2001), pp:965–970]. At the same time, all solutions of the matrix equation ?(X)=1/4J 4 are also given.  相似文献   

20.
We propose, analyze, and implement fully discrete two‐time level Crank‐Nicolson methods with quadrature for solving second‐order hyperbolic initial boundary value problems. Our algorithms include a practical version of the ADI scheme of Fernandes and Fairweather [SIAM J Numer Anal 28 (1991), 1265–1281] and also generalize the methods and analyzes of Baker [SIAM J Numer Anal 13 (1976), 564–576] and Baker and Dougalis [SIAM J Numer Anal 13 (1976), 577–598]. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号