首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Implicit‐explicit multistep finite element methods for nonlinear convection‐diffusion equations are presented and analyzed. In space we discretize by finite element methods. The discretization in time is based on linear multistep schemes. The linear part of the equation is discretized implicitly and the nonlinear part of the equation explicitly. The schemes are stable and very efficient. We derive optimal order error estimates. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17:93–104, 2001  相似文献   

2.
In modern numerical simulation of prospecting and exploiting oil‐gas resources and in environmental science, it is necessary to consider numerical method of nonlinear convection‐dominated diffusion problems. This thesis, starting from actual conditions such as the three‐dimensional characteristics of large‐scale science‐engineering computation, puts forward a kind of characteristic finite element alternating direction method with moving meshes. Some techniques, such as calculus of variations, operator‐splitting, generalized L2 projection, energy method, negative norm estimate, the theory of prior estimates and techniques, are adopted. Optimal order estimates in L2 norm are derived to determine the errors in the approximate solution. Thus the important theoretical problem has been solved. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

3.
4.
In this article, a characteristic finite element approximation of quadratic optimal control problems governed by linear convection–diffusion equations is given. We derive some a posteriori error estimates for both the control and the state approximations, where the control variable is constrained by pointwise inequality. The derived error estimators are then used as an error indicator to guide the mesh refinement. In this sense, they are very important in developing adaptive finite element algorithm for the optimal control problems. Finally, a numerical example is given to validate the efficiency and reliability of the theoretical results. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

5.
One domain decomposition method modified with characteristic differences is presented for non‐periodic three‐dimensional equations by multiply‐type quadratic interpolation and variant time‐step technique. This method consists of reduced‐scale, two‐dimensional computation on subdomain interface boundaries and fully implicit subdomain computation in parallel. A computational algorithm is outlined and an error estimate in discrete l2‐ norm is established by introducing new inner products and norms. Finally, numerical examples are given to illustrate the theoretical results, efficiency and parallelism of this method. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 17‐37, 2012  相似文献   

6.
We consider a time‐dependent and a stationary convection‐diffusion equation. These equations are approximated by a combined finite element – finite volume method: the diffusion term is discretized by Crouzeix‐Raviart piecewise linear finite elements on a triangular grid, and the convection term by upwind barycentric finite volumes. In the nonstationary case, we use an implicit Euler approach for time discretization. This scheme is shown to be L2‐stable uniformly with respect to the diffusion coefficient. In addition, it turns out that stability is unconditional in the time‐dependent case. These results hold if the underlying grid satisfies a condition that is fulfilled, for example, by some structured meshes. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 402–424, 2012  相似文献   

7.
Based on the overlapping domain decomposition, an efficient parallel characteristic finite difference scheme is proposed for solving convection‐diffusion equations numerically. We give the optimal convergence order in error estimate analysis, which shows that we just need to iterate once or twice at each time level to reach the optimal convergence order. Numerical experiments also confirm the theoretical analysis. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 854–866, 2011  相似文献   

8.
9.
We study the superconvergence of the finite volume element (FVE) method for solving convection‐diffusion equations using bilinear trial functions. We first establish a superclose weak estimate for the bilinear form of FVE method. Based on this estimate, we obtain the H1‐superconvergence result: . Then, we present a gradient recovery formula and prove that the recovery gradient possesses the ‐order superconvergence. Moreover, an asymptotically exact a posteriori error estimate is also given for the gradient error of FVE solution.Copyright © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1152–1168, 2014  相似文献   

10.
A two‐grid finite volume element method, combined with the modified method of characteristics, is presented and analyzed for semilinear time‐dependent advection‐dominated diffusion equations in two space dimensions. The solution of a nonlinear system on the fine‐grid space (with grid size h) is reduced to the solution of two small (one linear and one nonlinear) systems on the coarse‐grid space (with grid size H) and a linear system on the fine‐grid space. An optimal error estimate in H1 ‐norm is obtained for the two‐grid method. It shows that the two‐grid method achieves asymptotically optimal approximation, as long as the mesh sizes satisfy h = O(H2). Numerical example is presented to validate the usefulness and efficiency of the method. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

11.
We propose and analyze a new technique for developing residual‐based a posteriori error estimates over the stress and scalar displacement error for the lowest‐order Raviart–Thomas mixed finite element discretizations of convection‐diffusion‐reaction equations in two‐dimension space. The new technique is based on the abstract error estimates, the postprocessed approximation of the scalar displacement, and on the construction of an auxiliary problem. We consider the centered and upwind‐weighted mixed schemes, and concentrate the attention on the presence of an inhomogeneous and an anisotropic diffusion‐dispersion tensor and on a possible convection dominance. Global upper bounds can be directly computed on the base of the solution of the mixed schemes without any additional cost. Local lower bounds without any saturation assumption, hold from the case where convection or reaction are not present to convection‐ or reaction‐dominated equations, and their local efficiency depends on local or global variations in coefficients similar to Péclect number. Numerical experiments are reported to show the competitive behavior of the proposed posteriori error estimates, and to confirm the theoretical findings. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 593–624, 2014  相似文献   

12.
Finite difference schemes for the numerical solution of singularly perturbed convection problems on uniform grids are studied in the limit case where the viscosity and the meshsize approach zero at the same time. The present error estimates are given in terms of order of magnitude in the above limit process and are useful in a priori choosing adequate schemes and meshsizes for boundary‐layer problems and problems with closed characteristics. Published 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 280–295, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/num.10007  相似文献   

13.
We develop a quasi‐two‐level, coarse‐mesh‐free characteristic nonoverlapping domain decomposition method for unsteady‐state convection‐diffusion partial differential equations in multidimensional spaces. The development of the domain decomposition method is carried out by utilizing an additive Schwarz domain decomposition preconditioner, by using an Eulerian‐Lagrangian method for convection‐diffusion equations and by delicately choosing appropriate interface conditions that fully respect and utilize the hyperbolic nature of the governing equations. Numerical experiments are presented to illustrate the method. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

14.
In this article, an explicit multistep Galerkin finite element method for the modified regularized long wave equation is studied. The discretization of this equation in space is by linear finite elements, and the time discretization is based on explicit multistep schemes. Stability analysis and error estimates of our numerical scheme are derived. Numerical experiments indicate the validation of the scheme by L2– and L– error norms and three invariants of motion.4 © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1875–1889, 2015  相似文献   

15.
Finite volume method and characteristics finite element method are two important methods for solving the partial differential equations. These two methods are combined in this paper to establish a fully discrete characteristics finite volume method for fully nonlinear convection‐dominated diffusion problems. Through detailed theoretical analysis, optimal order H1 norm error estimates are obtained for this fully discrete scheme. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Alternating‐Direction Explicit (A.D.E.) finite‐difference methods make use of two approximations that are implemented for computations proceeding in alternating directions, e.g., from left to right and from right to left, with each approximation being explicit in its respective direction of computation. Stable A.D.E. schemes for solving the linear parabolic partial differential equations that model heat diffusion are well‐known, as are stable A.D.E. schemes for solving the first‐order equations of fluid advection. Several of these are combined here to derive A.D.E. schemes for solving time‐dependent advection‐diffusion equations, and their stability characteristics are discussed. In each case, it is found that it is the advection term that limits the stability of the scheme. The most stable of the combinations presented comprises an unconditionally stable approximation for computations carried out in the direction of advection of the system, from left to right in this case, and a conditionally stable approximation for computations proceeding in the opposite direction. To illustrate the application of the methods and verify the stability conditions, they are applied to some quasi‐linear one‐dimensional advection‐diffusion problems. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

17.
In this paper we analyze convergence of basic iterative Jacobi and Gauss–Seidel type methods for solving linear systems which result from finite element or finite volume discretization of convection–diffusion equations on unstructured meshes. In general the resulting stiffness matrices are neither M‐matrices nor satisfy a diagonal dominance criterion. We introduce two newmatrix classes and analyse the convergence of the Jacobi and Gauss–Seidel methods for matrices from these classes. A new convergence result for the Jacobi method is proved and negative results for the Gauss–Seidel method are obtained. For a few well‐known discretization methods it is shown that the resulting stiffness matrices fall into the new matrix classes. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
We prove an optimal‐order error estimate in a degenerate‐diffusion weighted energy norm for bilinear Galerkin finite element methods for two‐dimensional time‐dependent convection‐diffusion equations with degenerate diffusion. In the estimate, the generic constants depend only on certain Sobolev norms of the true solution but not the lower bound of the diffusion. This estimate, combined with a known stability estimate of the true solution of the governing partial differential equations, yields an optimal‐order estimate of the Galerkin finite element method, in which the generic constants depend only on the Sobolev norms of the initial and right side data. Preliminary numerical experiments were conducted to verify these estimates numerically. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

19.
We deal with the numerical solution of a scalar nonstationary nonlinear convection‐diffusion equation. We employ a combination of the discontinuous Galerkin finite element (DGFE) method for the space as well as time discretization. The linear diffusive and penalty terms are treated implicitly whereas the nonlinear convective term is treated by a special higher order explicit extrapolation from the previous time step, which leads to the necessity to solve only a linear algebraic problem at each time step. We analyse this scheme and derive a priori asymptotic error estimates in the L(L2) –norm and the L2(H1) –seminorm with respect to the mesh size h and time step τ. Finally, we present an efficient solution strategy and numerical examples verifying the theoretical results. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1456–1482, 2010  相似文献   

20.
A stabilized finite element method (FEM) is presented for solving the convection–diffusion equation. We enrich the linear finite element space with local functions chosen according to the guidelines of the residual‐free bubble (RFB) FEM. In our approach, the bubble part of the solution (the microscales) is approximated via an adequate choice of discontinuous bubbles allowing static condensation. This leads to a streamline‐diffusion FEM with an explicit formula for the stability parameter τK that incorporates the flow direction, has the capability to deal with problems where there is substantial variation of the Péclet number, and gives the same limit as the RFB method. The method produces the same a priori error estimates that are typically obtained with streamline‐upwind Petrov/Galerkin and RFB. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号