首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graft polymerization initiated by diperiodatocuprate(III) complex (Cu(III)) initiator was found to be an effective and convenient method for graft polymerization of vinyl monomers onto macroporous polyacrylamide gels, the so‐called cryogels (pAAm‐cryogels). The effect of time, temperature, monomer and initiator concentration during the graft polymerization in aqueous and aqueous‐organic media was studied. The graft polymerization of water‐soluble monomers as [2‐(methacryloyloxy)ethyl]‐trimethylammonium chloride, 2‐hydroxyethyl methacrylate, N‐isopropylacrylamide, and N,N‐dimethylacrylamide proceeds with higher grafting yield in aqueous medium, as compared with that in aqueous‐organic media. Graft polymerization in aqueous‐organic media such as water–DMSO solutions allows grafting of water‐insoluble monomers such as glycidyl methacrylate and Ntert‐butylacrylamide with high grafting degrees of 100 and 410%, respectively. It was found that the deposition of initiator on the pore surface of cryogels promoted graft polymerization by facilitating the formation of the redox couple Cu(III)‐acrylamide group. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1952–1963, 2006  相似文献   

2.

A super‐absorbent polymer was prepared by grafting copolymerization of acrylic acid onto Artemisia seed gum, using microwave irradiation and ammonium persulfate as an initiator. The effect of various preparation conditions on its water absorbency, such as the ratio of acrylic acid to Artemisia seed gum, degree of acrylic acid neutralization, amount of initiator and microwave irradiation time, was investigated by orthogonal tests. The optimal reaction conditions were 3 min (irradiation time), 70% neutralization degree of acrylic acid and 2% initiator on the basis of the mass of acrylic acid used. When the mass ratio of acrylic acid to Artemisia seed gum is 5:0.5, the product has a water absorbency close to 400 times at room temperature in distilled water, this indicated that is has a high water absorbency. The structure of the graft copolymer was confirmed by Fourier transform infrared spectrometer (FT‐IR) and thermogravimetric analysis (TGA). Further more, this microwave irradiation processing method to prepare water absorbent materials has no industrial cast off produced, that is to say, this method is environmentally friendly.  相似文献   

3.
The in situ grafting‐from approach via atom transfer radical polymerization was successfully applied to polystyrene, poly(styrene‐co‐acrylonitrile), and polyacrylonitrile grafted onto the convex surfaces of multiwalled carbon nanotubes (MWCNTs) with (2‐hydroxyethyl 2‐bromoisobutyrate) as an initiator. Thermogravimetric analysis showed that effective functionalization was achieved with the grafting approach. The grafted polymers on the MWCNT surface were characterized and confirmed with Fourier transform infrared spectroscopy and nuclear magnetic resonance. Raman and near‐infrared spectroscopy revealed that the grafting of polystyrene, poly(styrene‐co‐acrylonitrile), and polyacrylonitrile slightly affected the side‐wall structures. Field emission scanning electron microscopy showed that the carbon nanotube surface became rough because of the grafting of the polymers. Differential scanning calorimetry results indicated that the polymers grafted onto MWCNTs showed higher glass‐transition temperatures. The polymer‐grafted MWCNTs exhibited relatively good dispersibility in an organic solvent such as tetrahydrofuran. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 460–470, 2007  相似文献   

4.
To get highly reactive polymeric materials for selective studies of enzyme immobilization, water purification, separation, and enrichment technologies, we attempted to graft 4‐vinyl pyridine (4‐VP) onto Teflon‐PFA by simultaneous γ‐ray initiation. The resulting graft copolymers were quaternized by treatment with some alkylating agents. Optimum conditions for grafting were evaluated through the variation of the total dose of radiation, the amount of water, and the monomer concentration. The effect of the solvent composition (H2O/MeOH) was also studied. In the presence of MeOH, grafting occurred less often and was nonselective as 4‐VP was incorporated on both sides in comparison with highly selective grafting in an aqueous medium. The percentages of the grafting, total conversion, and grafting efficiency and the rates of the polymerization, grafting, and homopolymerization were also evaluated. Some other monomers such as methacrylic acid, methyl methacrylate, maleic acid, acrylonitrile, and vinyl imidazole were not incorporated onto the backbone film under the optimum grafting reaction conditions evaluated for the grafting of 4‐VP. Although some grafting occurred, the graft yield was too low to be considered of any significance. The grafted films were quaternized with benzyl chloride, and quaternized and unquaternized films were used for the immobilization of lipase. The former showed high activity with lipase and has potential for development as a bioreactor. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4506–4518, 2000  相似文献   

5.
Xyloglucan (XG), a water‐soluble food grade polysaccharide is reported as a substrate for the graft copolymerization of acrylonitrile (AN). XG was extracted from tamarind seed mucilage. Polymerization was initiated both by ceric ion in aqueous medium under N2 atmosphere and with microwave (MW) irradiation. The progress of the reaction was monitored gravimetrically. The effect of different reaction parameters such as monomer concentration, level of ceric ammonium nitrate/HNO3 (CAN) initiator, reaction time and temperature, and MW power on the percent grafting (PG) was studied. Grafting of polyacrylonitrile (PAN) onto XG was confirmed by Fourier‐transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and scanning electron microscope (SEM) techniques have been used to study the thermal and morphological changes in the materials. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
A new biodegradable starch graft copolymer, starch‐g‐poly(1,4‐dioxan‐2‐one), was synthesized through the ring‐opening graft polymerization of 1,4‐dioxan‐2‐one onto a starch backbone. The grafting reactions were conducted with various 1,4‐dioxan‐2‐one/starch feed ratios to obtain starch‐g‐poly(1,4‐dioxan‐2‐one) copolymers with various poly(1,4‐dioxan‐2‐one) graft structures. The microstructure of starch‐g‐poly(1,4‐dioxan‐2‐one) was characterized in detail with one‐ and two‐dimensional NMR spectroscopy. The effect of the feed composition on the resulting microstructure of starch‐g‐poly(1,4‐dioxan‐2‐one) was investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3417–3422, 2004  相似文献   

7.
Poly(ethylene‐co‐vinyl acetate) (EVA) powders containing 10 and 20 wt % of vinyl acetate (VAc) units was saponified in ethanol/KOH solution in a heterogeneous manner. Intermolecular interaction between vinyl alcohol(VOH) units in the produced poly(ethylene‐co‐vinyl alcohol) (EVOH) promoted the crystallization of intervening segments composed of ethylene units. Ring opening polymerization of caprolactone (CL) in the presence of EVOH gave EVOH‐g‐PCL graft copolymers with relatively short chain branches. Even though the graft copolymerization was carried out in a homogeneous solution, all the VOH units were not equally reactive for the PCL grafting. And the unreacted VOH units decreased very slowly with the graft copolymerization time. EVOH‐g‐PCL decreased the domain size of the dispersed phase in low density polyethylene (PE)/biodegradable master batch (MB) blends, and thus increased their tensile properties significantly. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2561–2569, 2002  相似文献   

8.
Poly(cis‐cyclooctene) is synthesized via ring‐opening metathesis polymerization in the presence of a chain‐transfer agent and quantitatively hydrobrominated. Subsequent graft polymerization of tert‐butyl acrylate (tBA) via Cu‐catalyzed atom transfer radical polymerization (ATRP) from the non‐activated secondary alkyl bromide moieties finally results in PE‐g‐PtBA copolymer brushes. By varying the reaction conditions, a series of well‐defined graft copolymers with different graft densities and graft lengths are prepared. The maximum extent of grafting in terms of bromoalkyl groups involved is approximately 80 mol%. DSC measurements on the obtained graft copolymers reveal a decrease in Tm with increasing grafting density.  相似文献   

9.
Poly(2-(dimethylamino)ethylmethacrylate) was grafted on gellan gum (GG) in aqueous medium under microwave irradiation using ammonium persulfate and N,N,N′N′-tetramethylethylenediamine as the initiation system. Grafted copolymers were characterized by FT-IR, TGA, and SEM techniques. The influence of microwave power, exposure time, and composition of the reaction mixture on extent of grafting was studied. Conditions for obtaining the highest degree of grafting were optimized. The rate of grafting was determined from weight measurements. The overall activation energy for grafting is found to be 31.2 kJ/mol, indicating the occurrence of the grafting process with absorption of low thermal energy.  相似文献   

10.
A new graft copolymer, poly(2‐hydroxyethyl methacrylate‐co‐styrene) ‐graft‐poly(?‐caprolactone), was prepared by combination of reversible addition‐fragmentation chain transfer polymerization (RAFT) with coordination‐insertion ring‐opening polymerization (ROP). The copolymerization of styrene (St) and 2‐hydroxyethyl methacrylate (HEMA) was carried out at 60 °C in the presence of 2‐phenylprop‐2‐yl dithiobenzoate (PPDTB) using AIBN as initiator. The molecular weight of poly (2‐hydroxyethyl methacrylate‐co‐styrene) [poly(HEMA‐co‐St)] increased with the monomer conversion, and the molecular weight distribution was in the range of 1.09 ~ 1.39. The ring‐opening polymerization (ROP) of ?‐caprolactone was then initiated by the hydroxyl groups of the poly(HEMA‐co‐St) precursors in the presence of stannous octoate (Sn(Oct)2). GPC and 1H‐NMR data demonstrated the polymerization courses are under control, and nearly all hydroxyl groups took part in the initiation. The efficiency of grafting was very high. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5523–5529, 2004  相似文献   

11.
(Z)‐2‐Aryl‐1‐(2‐cyanoethyl)ethenylphosphonates were synthesized by the hexamethylphosphoramide‐promoted sequential transformation of tetra‐alkyl methanediphosphonates, by the action of potassium tert‐butoxide, and then by acrylonitrile and aldehydes. © 2002 Wiley Periodicals, Inc. Heteroatom Chem 13:116–119, 2002; Published online in Wiley Interscience (www.interscience.wiley.com). DOI 10.1002/hc.10004  相似文献   

12.
Poly(L ‐lactide) (PLLA) with terminal primary amino groups (PLLA‐NH2) was synthesized and used to construct PLLA‐grafted pullulan (Pul‐g‐PLLA). It consisted of a hydrophilic carboxymethyl Pul (CM‐Pul) main chain and hydrophobic PLLA graft chains that were created through a direct coupling reaction between PLLA‐NH2 and CM‐Pul using 2‐ethoxy‐1‐(ethoxycarbonyl)‐1,2‐dihydroquinoline as a condensation reagent. Pul‐g‐PLLAs with over 78 wt % sugar unit content were found to form nanometer‐sized aggregates in water. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5482–5487, 2004  相似文献   

13.
Poly(N‐acryloylglycinamide‐co‐acrylonitrile) (poly(NAGA‐AN)) copolymers were synthesized using reversible‐addition‐fragmentation transfer polymerization. In contrast to poly(NAGA) the thermoresponsive behavior of poly(NAGA‐AN) shows a narrow cooling/heating hysteresis in water with a tunable cloud point, depending on the acrylonitrile amount in polymer. Furthermore, we showed that there is no significant effect of the solution concentration on the cloud point and stable phase transition behavior in electrolyte solutions, which is presumable controlled by forming stable micellar like structures as a result of the block/graft‐copolymer structure. This is in contrast to poly(NAGA) which shows a strong concentration dependent cloud point in aqueous solution with a broad cooling/heating hysteresis. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 274–279  相似文献   

14.
Using potassium diperiodatonickelate (Ni (IV)) as an efficient initiator, the graft copolymerization of methyl acrylate (MA) onto organophilic montmorillonite (OMMT) was successfully performed in an alkaline medium. Three grafting parameters were systematically evaluated as functions of the temperature, the initiator concentration, reaction time, pH value, and the ratio of MA to OMMT substrate. The structure of the titled graft copolymers (OMMT‐g‐PMA) were confirmed by Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), differential scanning calorimetry (DSC), and thermo‐gravimetric analysis (TGA). It was found that Ni (IV) was a highly efficient initiator for graft copolymerization of the MA onto OMMT, i.e., grafting efficiency is as high as 95% and grafting percentage can be facilely controlled within 700% in this study. In addition, the highest grafting efficiency and grafting percentage were obtained when temperature adopted was over 40°C and pH was about 10.3. A single‐electron‐transfer mechanism was proposed to illustrate the formation of radicals and the initiation reaction. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Hydrogenated deproteinized natural rubber (HDPNR) with nanomatrix structure was prepared through graft‐copolymerization of acrylonitrile and styrene onto HDPNR particle in latex stage. Structural characterization of the resulting materials through nuclear magnetic resonance and Fourier‐transform infrared spectroscopy confirmed that acrylonitrile and styrene were grafted onto HDPNR. The weather resistance, thermal properties, mechanical properties, storage modulus, and morphology of the resulting materials were investigated in comparison with those of HDPNR. The obtained result indicated that the graft‐copolymerization of HDPNR with hydrogenation conversion of 60 mol% attained the highest grafting efficiency. Thermal resistance and storage modulus of HDPNR‐graft‐poly (styrene‐co‐acrylonitrile) (HDPNR‐g‐SAN) were superior compared with those of HDPNR and deproteinized natural rubber. This was attributed to the nanomatrix formed in HDPNR‐g‐SAN, which was confirmed through a transmission electron microscope. Ribbed smoked sheet natural rubber exhibited the outstanding mechanical properties and weather resistance when it was mixed with HDPNR‐g‐SAN.  相似文献   

16.
Graft copolymers comprising poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) backbone and poly(styrene sulfonic acid) side chains, i.e. P(VDF‐co‐CTFE)‐g‐PSSA were synthesized using atom transfer radical polymerization (ATRP) for composite nanofiltration (NF) membranes. Direct initiation of the secondary chlorinated site of CTFE units facilitates grafting of PSSA, as revealed by FT‐IR spectroscopy. The successful “grafting from” method and the microphase‐separated structure of the graft copolymer were confirmed by transmission electron microscopy (TEM). Wide angle X‐ray scattering (WAXS) also showed the decrease in the crystallinity of P(VDF‐co‐CTFE) upon graft copolymerization. Composite NF membranes were prepared from P(VDF‐co‐CTFE)‐g‐PSSA as a top layer coated onto P(VDF‐co‐CTFE) ultrafiltration support membrane. Both the rejections and the flux of composite membranes increased with increasing PSSA concentration due to the increase in SO3H groups and membrane hydrophilicity, as supported by contact angle measurement. The rejections of NF membranes containing 47 wt% of PSSA were 83% for Na2SO4 and 28% for NaCl, and the solution flux were 18 and 32 L/m2 hr, respectively, at 0.3 MPa pressure. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
《中国化学会会志》2003,50(2):273-278
Spiro[indole‐pyranoimidazoles] ( 5 ) and spiro[indole‐pyranobenzopyrans] ( 6 ) are readily synthesized in one step in 86–92 and 91–97% yields by the Michael condensation of 3‐dicyanomethylene‐2H‐indol‐2‐ones ( 2 ) with 1‐phenyl‐2‐thiohydantoin ( 3 ) and 4‐hydroxy‐2H‐1‐benzopyran‐2‐one ( 4 ), respectively, without using any catalyst under different reaction conditions (conventional heating and microwave irradiation using (a) polar solvents (b) neutral alumina/silica gel as inorganic solid support in solvent free conditions). 2 was synthesized in situ by the Knoevenagel condensation of indole‐2,3‐dione ( 1 ) and malononitrile in the absence of any catalyst. 100% conversion was observed in most cases on TLC which also showed the formation of a single product. The comparison between the various methods is established.  相似文献   

18.
A series of polyallene‐based well‐defined amphiphilic graft copolymers, poly(6‐methyl‐1,2‐heptadiene‐4‐ol)‐g‐poly(2‐(diethylamino)ethyl methacrylate) (PMHDO‐g‐PDEAEMA), was synthesized through the grafting‐from technique. First, double‐bond‐containing PMHDO backbone bearing pendant hydroxyls was prepared via [(η3‐allyl)NiOCOCF3]2‐initiated living coordination polymerization of 6‐methyl‐1,2‐heptadiene‐4‐ol (MHDO). The pendant hydroxyls in the homopolymer were then reacted with 2‐chloropropionyl chloride to give PMHDO‐Cl macroinitiator. Finally, hydrophilic PDEAEMA side chains were formed by single electron transfer‐living radical polymerization (SET‐LRP) of 2‐(diethylamino)ethyl methacrylate (DEAEMA) in THF/H2O initiated by the macroinitiator using CuCl/Me6TREN as catalytic system to afford PMHDO‐g‐PDEAEMA graft copolymers. The narrow molecular weight distributions (Mw/Mn ≤ 1.35) and kinetics experiment showed the controllability of SET‐LRP graft copolymerization of DEAEMA. The critical micelle concentration (cmc) of PMHDO‐g‐PDEAEMA amphiphilic graft copolymer in aqueous media was determined by fluorescence probe technique and the relationships between cmc and pH or salinity were also investigated. Micellar morphologies were preliminarily explored using transmission electron microscopy. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

19.
Pre‐irradiation grafting of styrene/divinylbenzene (DVB) onto poly(tetrafluoroethylene‐co‐hexafluoropropylene) (FEP) films was studied with respect to the influence of solvent. Particularly favorable grafting conditions with long radical lifetimes and reasonably high polymerization rates were achieved with solvents that are precipitants for the newly formed polystyrene, e.g., low‐molecular‐mass alcohols like iPrOH, AcOH, their mixtures with H2O, and H2O/surfactant systems. Using one of these solvents significantly extended the range of accessible graft levels, and a specific degree of grafting was obtained at a much lower monomer concentration and irradiation dose than with grafting in a good solvent such as toluene. As practical consequences, the monomer was used more efficiently, and the radiation damage of the perfluorinated base material was reduced with the result of improved mechanical properties of the grafted films.  相似文献   

20.
A basic alumina‐supported microwave assisted simple methodology has been developed for the synthesis of aryl‐heteroaryl methanes (benzylated quinolones) via transition metal catalyzed cross‐coupling reaction of halo substituted polynuclear oxa‐aza quinolones with benzyl indium, an organometallic reagent easily derived from commercially available benzyl bromide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号