首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The gas‐phase elimination kinetics of ethyl 2‐furoate and 2‐ethyl 2‐thiophenecarboxylate was carried out in a static reaction system over the temperature range of 623.15–683.15 K (350–410°C) and pressure range of 30–113 Torr. The reactions proved to be homogeneous, unimolecular, and obey a first‐order rate law. The rate coefficients are expressed by the following Arrhenius equations: ethyl 2‐furoate, log k1 (s?1) = (11.51 ± 0.17)–(185.6 ± 2.2) kJ mol?1 (2.303 RT)?1; ethyl 2‐thiophenecarboxylate, log k1 (s?1) = (11.59 ± 0.19)–(183.8 ± 2.4) kJ mol?1 (2.303 RT)?1. The elimination products are ethylene and the corresponding heteroaromatic 2‐carboxylic acid. However, as the reaction temperature increases, the intermediate heteroaromatic carboxylic acid products slowly decarboxylate to give the corresponding heteroaromatic furan and thiophene, respectively. The mechanisms of these reactions are suggested and described. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 41: 145–152, 2009  相似文献   

2.
The gas‐phase elimination kinetics of the above‐mentioned compounds were determined in a static reaction system over the temperature range of 369–450.3°C and pressure range of 29–103.5 Torr. The reactions are homogeneous, unimolecular, and obey a first‐order rate law. The rate coefficients are given by the following Arrhenius expressions: ethyl 3‐(piperidin‐1‐yl) propionate, log k1(s?1) = (12.79 ± 0.16) ? (199.7 ± 2.0) kJ mol?1 (2.303 RT)?1; ethyl 1‐methylpiperidine‐3‐carboxylate, log k1(s?1) = (13.07 ± 0.12)–(212.8 ± 1.6) kJ mol?1 (2.303 RT)?1; ethyl piperidine‐3‐carboxylate, log k1(s?1) = (13.12 ± 0.13) ? (210.4 ± 1.7) kJ mol?1 (2.303 RT)?1; and 3‐piperidine carboxylic acid, log k1(s?1) = (14.24 ± 0.17) ? (234.4 ± 2.2) kJ mol?1 (2.303 RT)?1. The first step of decomposition of these esters is the formation of the corresponding carboxylic acids and ethylene through a concerted six‐membered cyclic transition state type of mechanism. The intermediate β‐amino acids decarboxylate as the α‐amino acids but in terms of a semipolar six‐membered cyclic transition state mechanism. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 38: 106–114, 2006  相似文献   

3.
The gas phase elimination kinetics of 2‐bromopropene was studied over the temperature range of 571–654 K and pressure range of 12–46 Torr using the seasoned static reaction system. Propyne was the only olefinic product formed and accounted for >98% of the reaction. This product was formed by homogeneous, unimolecular pathways with high‐pressure first‐order rate constant k given by the equation k = 1013.47 ± 0.6 exp?208.2 ± 6.7 (kJ mol?1)/RT. The error limits are 95% certainty limits. The observed Arrhenius parameters are consistent with the four centered activated complex. The presence of methyl group on α‐carbon lowers the activation energy by 41 kJ mol?1. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 39: 1–5, 2007  相似文献   

4.
The elimination kinetics of ethyl N‐benzyl‐N‐cyclopropylcarbamate and ethyl diphenylcarbamate were investigated over the temperature range of 349.9–440.0°C and the pressure range of 31–106 Torr. These reactions have been found to be homogeneous, unimolecular, and obey a first‐order rate law. The products are ethylene, carbon monoxide, and the corresponding secondary amine. The rate coefficient is expressed by the following Arrhenius equations: For ethyl N‐benzyl‐N‐cyclopropylcarbamate log k1 (s?1) = (12.94 ± 0.09) ? (198.5 ± 0.9) kJ mol?1 (2.303RT)?1 For ethyl diphenylcarbamate log k1 (s?1) = (12.91 ± 0.18) ? (208.2 ± 2.4) kJ mol?1 (2.303RT)?1 The presence of phenyl and bulky groups at the nitrogen atom of the ethylcarbamate showed a decrease in the rate of elimination. Steric factor may be operating during the process of decomposition of these substrates. These reactions appear to undergo a semipolar six‐membered cyclic transition type of mechanism.© 2001 John Wiley & Sons, Inc. Int J Chem Kinet 34: 67–71, 2002  相似文献   

5.
The kinetics of the C2H5 + Cl2, n‐C3H7 + Cl2, and n‐C4H9 + Cl2 reactions has been studied at temperatures between 190 and 360 K using laser photolysis/photoionization mass spectrometry. Decays of radical concentrations have been monitored in time‐resolved measurements to obtain reaction rate coefficients under pseudo‐first‐order conditions. The bimolecular rate coefficients of all three reactions are independent of the helium bath gas pressure within the experimental range (0.5–5 Torr) and are found to depend on the temperature as follows (ranges are given in parenthesis): k(C2H5 + Cl2) = (1.45 ± 0.04) × 10?11 (T/300 K)?1.73 ± 0.09 cm3 molecule?1 s?1 (190–359 K), k(n‐C3H7 + Cl2) = (1.88 ± 0.06) × 10?11 (T/300 K)?1.57 ± 0.14 cm3 molecule?1 s?1 (204–363 K), and k(n‐C4H9 + Cl2) = (2.21 ± 0.07) × 10?11 (T/300 K)?2.38 ± 0.14 cm3 molecule?1 s?1 (202–359 K), with the uncertainties given as one‐standard deviations. Estimated overall uncertainties in the measured bimolecular reaction rate coefficients are ±20%. Current results are generally in good agreement with previous experiments. However, one former measurement for the bimolecular rate coefficient of C2H5 + Cl2 reaction, derived at 298 K using the very low pressure reactor method, is significantly lower than obtained in this work and in previous determinations. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 614–619, 2007  相似文献   

6.
The gas‐phase reactions of the NO3 radical with 2‐methylthiophene, 3‐methylthiophene, and 2,5‐dimethylthiophene have been studied, using relative and absolute methods at 298 K. Determination of relative rate was performed using Teflon collapsible bag as the reaction chamber and gas chromatography as the analytical tool. For the absolute method, experiments were carried out using fast‐flow‐discharge technique with detection of NO3 by laser‐induced fluorescence. The temperature dependence was studied by the absolute technique for the reactions of NO3 with 2‐methylthiophene and 3‐methylthiophene in the range 263–335 K. The proposed Arrhenius expressions for the reaction of the nitrate radical with 2‐methylthiophene and 3‐methylthiophene are k = (4 ± 2) × 10?16 exp[?(2200 ± 100)/T]] cm3 molecule?1 s?1 and k = (3 ± 2) × 10?15 exp[?(1700 ± 200)/T]] cm3 molecule?1 s?1, respectively. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 286–293, 2003  相似文献   

7.
The kinetics of the gas‐phase reactions of O3 with a series of selected terpenes has been investigated under flow‐tube conditions at a pressure of 100 mbar synthetic air at 295 ± 0.5 K. In the presence of a large excess of m‐xylene as an OH radical scavenger, rate coefficients k(O3+terpene) were obtained with a relative rate technique, (unit: cm3 molecule?1 s?1, errors represent 2σ): α‐pinene: (1.1 ± 0.2) × 10?16, 3Δ‐carene: (5.9 ± 1.0) × 10?17, limonene: (2.5 ± 0.3) × 10?16, myrcene: (4.8 ± 0.6) × 10?16, trans‐ocimene: (5.5 ± 0.8) × 10?16, terpinolene: (1.6 ± 0.4) × 10?15 and α‐terpinene: (1.5 ± 0.4) × 10?14. Absolute rate coefficients for the reaction of O3 with the used reference substances (2‐methyl‐2‐butene and 2,3‐dimethyl‐2‐butene) were measured in a stopped‐flow system at a pressure of 500 mbar synthetic air at 295 ± 2 K using FT‐IR spectroscopy, (unit: cm3 molecule?1 s?1, errors represent 2σ ): 2‐methyl‐2‐butene: (4.1 ± 0.5) × 10?16 and 2,3‐dimethyl‐2‐butene: (1.0 ± 0.2) × 10?15. In addition, OH radical yields were found to be 0.47 ± 0.04 for 2‐methyl‐2‐butene and 0.77 ± 0.04 for 2,3‐dimethyl‐2‐butene. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 394–403, 2002  相似文献   

8.
The gas‐phase elimination kinetics of the ethyl ester of two α‐amino acid type of molecules have been determined over the temperature range of 360–430°C and pressure range of 26–86 Torr. The reactions, in a static reaction system, are homogeneous and unimolecular and obey a first‐order rate law. The rate coefficients are given by the following equations. For N,N‐dimethylglycine ethyl ester: log k1(s?1) = (13.01 ± 3.70) ? (202.3 ± 0.3)kJ mol?1 (2.303 RT)?1 For ethyl 1‐piperidineacetate: log k1(s?1) = (12.91 ± 0.31) ? (204.4 ± 0.1)kJ mol?1 (2.303 RT)?1 The decompositon of these esters leads to the formation of the corresponding α‐amino acid type of compound and ethylene. However, the amino acid intermediate, under the condition of the experiments, undergoes an extremely rapid decarboxylation process. Attempts to pyrolyze pure N,N‐dimethylglycine, which is the intermediate of dimethylglycine ethyl ester pyrolysis, was possible at only two temperatures, 300 and 310°C. The products are trimethylamine and CO2. Assuming log A = 13.0 for a five‐centered cyclic transition‐state type of mechanism in gas‐phase reactions, it gives the following expression: log k1(s?1) = (13.0) ? (176.6)kJ mol?1 (2.303 RT)?1. The mechanism of these α‐amino acids differs from the decarbonylation elimination of 2‐substituted halo, hydroxy, alkoxy, phenoxy, and acetoxy carboxylic acids in the gas phase. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33:465–471, 2001  相似文献   

9.
An experimental study of the thermal decomposition of a β‐hydroxy alkene, 3‐methyl‐3‐buten‐1‐ol, in m‐xylene solution, has been carried out at five different temperatures in the range of 513.15–563.15 K. The temperature dependence of the rate constants for the decomposition of this compound in the corresponding Arrhenius equation is given by ln k (s?1) = (25.65 ± 1.52) ? (17,944 ± 814) (kJ·mol?1T?1. A computational study has been carried out at the M05–2X/6–31+G(d,p) level of theory to calculate the rate constants and the activation parameters by the classical transition state theory. There is a good agreement between the experimental and calculated rate constants and activation Gibbs energies. The bonding characteristics of reactant, transition state, and products have been investigated by the natural bond orbital analysis, which provides the natural atomic charges and the Wiberg bond indices. Based on the results obtained, the mechanism proposed is a one‐step process proceeding through a six‐membered cyclic transition state, being a concerted and slightly asynchronous process. The results have been compared with those obtained previously by us (Struct Chem 2013, 24, 1811–1816) for the thermal decomposition of 3‐buten‐1‐ol, in m‐xylene solution. We can conclude that in the compound studied in this work, 3‐methyl‐3‐buten‐1‐ol, the effect of substitution at position 3 by a weakly activating CH3 group is the stabilization of the transition state formed in the reaction and therefore a small increase in the rate of thermal decomposition.  相似文献   

10.
We have carried out relative rate experiments (T = 294 ± 2 K, atmospheric pressure) to investigate the OH‐oxidation of o‐, m‐, and p‐ethyltoluene and n‐nonane (k1, k2, k3, and k4 respectively). The experiments were performed in a 2‐m3 smog chamber with Teflon coated walls. The rate constants obtained are (in cm3 molecule?1 s?1 with two sigma uncertainties): k1 = (1.36 ± 0.07) × 10?11; k2 = (2.12 ± 0.26) × 10?11; k3 = (1.47 ± 0.04) × 10?11, and k4 = (0.95 ± 0.02) × 10?11. The measured rate constants are in accordance with previously published data, so that a coherent group of values for the compounds studied can be established. Atmospheric implications, ozone, and particle production are discussed. In addition, we have determined the amount of o‐, m‐, and p‐ethyltoluenes in different types of gasoline. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 367–378 2004  相似文献   

11.
Pulsed laser photolysis/vacuum ultraviolet laser‐induced fluorescence techniques were used to measure rate coefficients for Cl atom reactions with a series of fluoroalkenes (CxF2x+1CH?CH2, x = 1,2,4,6,8) in 6–10 Torr of CF4 diluent at 295 ± 2 K. Rate coefficients (units of 10?11 cm3 molecule?1s?1) of 4.49 ± 0.64, 6.58 ± 0.59, 8.91 ± 0.58, 9.27 ± 0.64, and 9.00 ± 0.87 were determined for CxF2x+1CH?CH2 with x = 1,2,4,6, and 8, respectively. In 6–10 Torr of CF4 diluent, the kinetics of the title reactions are at, or near, the high‐pressure limit for x = 4, 6, and 8, approximately 30% below the high‐pressure limit for x = 2, and approximately 50% below the high‐pressure limit for x = 1. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 328–332, 2007  相似文献   

12.
The elimination kinetics of the title compounds were carried out in a static system over the temperature range of 290–330°C and pressure range of 29.5–124 torr. The reactions, carried out in seasoned vessels with allyl bromide, obey first-order rate law, are homogeneous and unimolecular. The temperature dependence of the rate coefficients is given by the following Arrhenius equations: for 3-buten-1-methanesulphonate, log k1(s?1) = (12.95 ± 0.53) ? (175.3 ± 5.9)kJ mol?1(2.303RT)?1; and for 3-methyl-3-buten-1-methanesulphonate, log k1(s?1) = (12.98 ± 0.40) ? (174.7 ± 4.5)kJ mol?1(2.303RT)?1. The olefinic double bond appears to assist in the rate of pyrolysis. The mechanism is described in terms of an intimate ion-pair intermediate. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
Rate coefficients for gas‐phase reaction between nitrate radicals and the n‐C6–C10 aldehydes have been determined by a relative rate technique. All experiments were carried out at 297 ± 2 K, 1020 ± 10 mbar and using synthetic air or nitrogen as the bath gas. The experiments were made with a collapsible sampling bag as reaction chamber, employing solid‐phase micro extraction for sampling and gas chromatography/flame ionization detection for analysis of the reaction mixtures. One limited set of experiments was carried out using a glass reactor and long‐path FTIR spectroscopy. The results show good agreement between the different techniques and conditions employed as well as with previous studies (where available). With butanal as reference compound, the determined values (in units of 10?14 cm3 molecule?1 s?1) for each of the aldehydes were as follows: hexanal, 1.7 ± 0.1; heptanal, 2.1 ± 0.3; octanal, 1.5 ± 0.2; nonanal, 1.8 ± 0.2; and decanal, 2.2 ± 0.4. With propene as reference compound, the determined rate coefficients were as follows: heptanal, 1.9 ± 0.2; octanal, 2.0 ± 0.3; and nonanal, 2.2 ± 0.3. With 1‐butene as reference compound, the rate coefficients for hexanal and heptanal were 1.6 ± 0.2 and 1.8 ± 0.1, respectively. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 35: 120–129, 2003  相似文献   

14.
The kinetics of reactions of OH radical with n‐heptane and n‐hexane over a temperature range of 240–340K has been investigated using the relative rate combined with discharge flow/mass spectrometry (RR/DF/MS) technique. The rate constant for the reaction of OH radical with n‐heptane was measured with both n‐octane and n‐nonane as references. At 298K, these rate constants were determined to be k1, octane = (6.68 ± 0.48) × 10?12 cm3 molecule?1 s?1 and k1, nonane = (6.64 ± 1.36) × 10?12 cm3 molecule?1 s?1, respectively, which are in very good agreement with the literature values. The rate constant for reaction of n‐hexane with the OH radical was determined to be k2 = (4.95 ± 0.40) × 10?12 cm3 molecule?1 s?1 at 298K using n‐heptane as a reference. The Arrhenius expression for these chemical reactions have been determined to be k1, octane = (2.25 ± 0.21) × 10?11 exp[(?293 ± 37)/T] and k2 = (2.43 ± 0.52) × 10?11 exp[(?481.2 ± 60)/T], respectively. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 489–497, 2011  相似文献   

15.
Sabinaketone is one major photooxidation product of sabinene, an important biogenic volatile organic compound. This article provides the first product study and the second rate constant determination of its reaction with OH radicals. Experiments were investigated under controlled conditions for pressure and temperature in the LISA indoor simulation chamber using FTIR spectrometry. Kinetic study was carried out at 295 ± 2 K and atmospheric pressure using the relative rate technique with isoprene as the reference compound. The rate constant was found to be ksabinaketone + OH = (7.1 ± 1.0) × 10?12 molecule?1 cm3 s?1. Acetone and formaldehyde were detected as products of the reaction with the respective yields of Racetone = 0.9 ± 0.2 and RHCHO = 1.2 ± 0.3. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 415–421, 2007  相似文献   

16.
The kinetics and mechanism of Hg2+‐catalyzed substitution of cyanide ion in an octahedral hexacyanoruthenate(II) complex by nitroso‐R‐salt have been studied spectrophotometrically at 525 nm (λmax of the purple‐red–colored complex). The reaction conditions were: temperature = 45.0 ± 0.1°C, pH = 7.00 ± 0.02, and ionic strength (I) = 0.1 M (KCl). The reaction exhibited a first‐order dependence on [nitroso‐R‐salt] and a variable order dependence on [Ru(CN)64?]. The initial rates were obtained from slopes of absorbance versus time plots. The rate of reaction was found to initially increase linearly with [nitroso‐R‐salt], and finally decrease at [nitroso‐R‐salt] = 3.50 × 10?4 M. The effects of variation of pH, ionic strength, concentration of catalyst, and temperature on the reaction rate were also studied and explained in detail. The values of k2 and activation parameters for catalyzed reaction were found to be 7.68 × 10?4 s?1 and Ea = 49.56 ± 0.091 kJ mol?1, ΔH = 46.91 ± 0.036 kJ mol?1, ΔS = ?234.13 ± 1.12 J K?1 mol?1, respectively. These activation parameters along with other experimental observations supported the solvent assisted interchange dissociative (Id) mechanism for the reaction. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 41: 215–226, 2009  相似文献   

17.
A laser flash photolysis–resonance fluorescence technique has been employed to study the kinetics of the reactions of atomic chlorine with acetone (CH3C(O)CH3; k1), 2‐butanone (C2H5C(O)CH3; k2), and 3‐pentanone (C2H5C(O)C2H5; k3) as a function of temperature (210–440 K) and pressure (30–300 Torr N2). No significant pressure dependence is observed for any of the reactions studied. Arrhenius expressions (units are 10?11 cm3 molecule?1 s?1) obtained from the data are k1(T) = (1.53 ± 0.19) exp[(?594 ± 33)/T], k2(T) = (2.77 ± 0.33) exp[(+76 ± 33)/T], and k3(T) = (5.66 ± 0.41) exp[(+87 ± 22)/T], where uncertainties are 2σ and represent precision only. The accuracy of reported rate coefficients is estimated to be ±15% over the entire range of pressure and temperature investigated. The room temperature rate coefficients reported in this study are in good agreement with a majority of literature values. However, the activation energies reported in this study are in poor agreement with the literature values, particularly for 2‐butanone and 3‐pentanone. Possible explanations for discrepancies in published kinetic parameters are proposed, and the potential role of Cl + ketone reactions in atmospheric chemistry is discussed. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 259–267, 2008  相似文献   

18.
Absolute rate coefficients for the gas‐phase reactions of CF2?CFCl and (E/Z)‐CFCl?CFCl with O(3P) atoms have been measured at 298 K using a discharge flow tube coupled to a chemiluminescence detection system. The observed rate constant values are (4.5 ± 0.4) × 10?13 and (1.5 ± 0.3) × 10?13 cm3 molecule?1 s?1, respectively. The experiments were carried out under pseudo‐first‐order conditions with [O(3P)]0 ? [alkene]0. These results are compared to those of O atom reactions with other chlorine‐ and fluorine‐substituted ethenes. Different factors that affect the rate of addition to the double bond are considered. The O(3P)/chloroethenes reactions do not obey the reactivity trend with the ionization potential, as is the case in the alkene and methyl‐substituted alkene reactions. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36:525–533, 2004  相似文献   

19.
The gas‐phase elimination of phenyl chloroformate gives chlorobenzene, 2‐chlorophenol, CO2, and CO, whereasp‐tolyl chloroformate produces p‐chlorotoluene and 2‐chloro‐4‐methylphenol CO2 and CO. The kinetic determination of phenyl chloroformate (440–480oC, 60–110 Torr) and p‐tolyl chloroformate (430–480°C, 60–137 Torr) carried out in a deactivated static vessel, with the free radical inhibitor toluene always present, is homogeneous, unimolecular and follows a first‐order rate law. The rate coefficient is expressed by the following Arrhenius equations: Phenyl chloroformate: Formation of chlorobenzene, log kI = (14.85 ± 0.38) (260.4 ± 5.4) kJ mol?1 (2.303RT)?1; r = 0.9993 Formation of 2‐chlorophenol, log kII = (12.76 ± 0.40) – (237.4 ± 5.6) kJ mol?1(2.303RT)?1; r = 0.9993 p‐Tolyl chloroformate: Formation of p‐chlorotoluene: log kI = (14.35 ± 0.28) – (252.0 ± 1.5) kJ mol–1 (2.303RT)?1; r = 0.9993 Formation of 2‐chloro‐4‐methylphenol, log kII = (12.81 ± 0.16) – (222.2 ± 0.9) kJ mol?1(2.303RT)–1; r = 0.9995 The estimation of the kI values, which is the decarboxylation process in both substrates, suggests a mechanism involving an intramolecular nucleophilic displacement of the chlorine atom through a semipolar, concerted four‐membered cyclic transition state structure; whereas the kII values, the decarbonylation in both substrates, imply an unusual migration of the chlorine atom to the aromatic ring through a semipolar, concerted five‐membered cyclic transition state type of mechanism. The bond polarization of the C–Cl, in the sense Cδ+ … Clδ?, appears to be the rate‐determining step of these elimination reactions.  相似文献   

20.
The kinetics of the reactions of ethyl (1) and n‐propyl (2) nitrates with OH radicals has been studied using a low‐pressure flow tube reactor combined with a quadrupole mass spectrometer. The rate constants of the title reactions were determined under pseudo–first‐order conditions from kinetics of OH consumption in high excess of nitrates. The overall rate constants, k1 = 1.14 × 10?13 (T/298)2.45 exp(193/T) and k2 = 3.00 × 10?13 (T/298)2.50 exp(205/T) cm3 molecule?1 s?1 (with conservative 15% uncertainty), were determined at a total pressure of 1 Torr of helium over the temperature range (248–500) and (263–500) K, respectively. The yields of the carbonyl compounds, acetaldehyde and propanal, resulting from the abstraction by OH of an α‐hydrogen atom in ethyl and n‐propyl nitrates, followed by α‐substituted alkyl radical decomposition, were determined at T = 300 K to be 0.77 ± 0.12 and 0.22 ± 0.04, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号