首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
(S)‐1‐Cyano‐2‐methylpropyl‐4′‐{[4‐(8‐vinyloxyoctyloxy)benzoyl]oxy}biphenyl‐ 4‐carboxylate [ (S)‐11 ] and (R)‐1‐cyano‐2‐methylpropyl‐4′‐{[4‐(8‐vinyloxyoctyloxy)benzoyl]oxy}biphenyl‐4‐carboxylate [( R)‐11 ] enantiomers, both greater than 99% enantiomeric excess, and their corresponding homopolymers, poly[ (S)‐11 ] and poly[ (R)‐11 ], with well‐defined molecular weights and narrow molecular weight distributions were synthesized and characterized. The mesomorphic behaviors of (S)‐11 and poly[ (S)‐11 ] are identical to those of (R)‐11 and poly[ (R)‐11 ], respectively. Both (S)‐11 and (R)‐11 exhibit enantiotropic SA, S, and SX (unidentified smectic) phases. The corresponding homopolymers exhibit SA and S phases. The homopolymers with a degree of polymerization (DP) less than 6 also show a crystalline phase, whereas those with a DP greater than 10 exhibit a second SX phase. Phase diagrams were investigated for four different pairs of enantiomers, (S)‐11 /( R)‐11 , (S)‐11 /poly[ (R)‐11 ], and poly[ (S)‐11 ]/poly[ (R)‐11 ], with similar and dissimilar molecular weights. In all cases, the structural units derived from the enantiomeric components are miscible and, therefore, isomorphic in the SA and S phases over the entire range of enantiomeric composition. Chiral molecular recognition was observed in the SA and SX phases of the monomers but not in the SA phase of the polymers. In addition, a very unusual chiral molecular recognition effect was detected in the S phase of the monomers below their crystallization temperature and in the S phase of the polymers below their glass‐transition temperature. In the S phase of the monomers above the melting temperature and of the polymers above the glass‐transition temperature, nonideal solution behavior was observed. However, in the SA phase the monomer–polymer and polymer–polymer mixtures behave as an ideal solution. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3631–3655, 2000  相似文献   

3.
Multipulse pulsed laser polymerization coupled with size exclusion chromatography (MP‐PLP‐SEC) has been employed to study the depropagation kinetics of the sterically demanding 1,1‐disubstituted monomer di(4‐tert‐butylcyclohexyl) itaconate (DBCHI). The effective rate coefficient of propagation, k, was determined for a solution of monomer in anisole at concentrations, c, 0.72 and 0.88 mol L?1 in the temperature range 0 ≤ T ≤ 70 °C. The resulting Arrhenius plot (i.e., ln k vs. 1/RT) displayed a subtle curvature in the higher temperature regime and was analyzed in the linear part to yield the activation parameters of the forward reaction. In the temperature region where no depropagation was observed (0 ≤ T ≤ 50 °C), the following Arrhenius parameters for kp were obtained (DBCHI, Ep = 35.5 ± 1.2 kJ mol?1, ln Ap = 14.8 ± 0.5 L mol?1 s?1). In addition, the k data was analyzed in the depropagatation regime for DBCHI, resulting in estimates for the associated entropy (?ΔS = 150 J mol?1 K?1) of polymerization. With decreasing monomer concentration and increasing temperature, it is increasingly more difficult to obtain well structured molecular weight distributions. The Mark Houwink Kuhn Sakurada (MHKS) parameters for di‐n‐butyl itaconate (DBI) and DBCHI were determined using a triple detection GPC system incorporating online viscometry and multi‐angle laser light scattering in THF at 40 °C. The MHKS for poly‐DBI and poly‐DBCHI in the molecular weight range 35–256 kDa and 36.5–250 kDa, respectively, were determined to be KDBI = 24.9 (103 mL g?1), αDBI = 0.58, KDBCHI = 12.8 (103 mL g?1), and αDBCHI = 0.63. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1931–1943, 2007  相似文献   

4.
Poly(2,5‐dimethoxyaniline) (PDMA)–Ag composites were successfully obtained through the oxidative polymerization of 2,5‐dimethoxyaniline in poly(styrene sulfonic acid) with CH3SO3Ag and AgNO3 as oxidants. In situ ultraviolet–visible spectroscopy results showed that the growth rate of PDMA was strongly affected by CH3SO and NO. The coupling reaction of PDMA and NO was proposed to explain the lower growth rate of PDMA with AgNO3 as the oxidant in comparison with CH3SO3Ag. X‐ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were used to validate the proposed coupling reaction through the monitoring of the side products and oxidized state of PDMA. The results showed that there were more side products and lower oxidized states for the composite structure in the presence of NO than in the presence of CH3SO, and this agreed with the proposal. Transmission electron microscopy showed that the Ag nanoparticles had almost the same size, regardless of the anions. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6624–6632, 2006  相似文献   

5.
A well‐defined branched copolymer with PLLA‐b‐PS2 branches was prepared by combination of reversible addition‐fragmentation transfer (RAFT) polymerization, ring‐opening polymerization (ROP), and atom transfer radical polymerization (ATRP). The RAFT copolymerization of methyl acrylate (MA) and hydroxyethyl acrylate (HEA) yielded poly(MA‐co‐HEA), which was used as macro initiator in the successive ROP polymerization of LLA. After divergent reaction of poly(MA‐co‐HEA)‐g‐PLLAOH with divergent agent, the macro initiator, poly(MA‐co‐HEA)‐g‐PLLABr2 was formed in high conversion. The following ATRP of styrene (St) produced the target polymer, poly(MA‐co‐HEA)‐g‐(PLLA‐b‐PS2). The structures, molecular weight, and molecular weight distribution of the intermediates and the target polymers obtained from every step were confirmed by their 1H NMR and GPC measurements. DSC results show one T = 3 °C for the poly(MA‐co‐HEA), T = ?5 °C, T= 122 °C, and T = 157 °C for the branched copolymers (poly(MA‐co‐HEA)‐g‐PLLA), and T = 51 °C, T = 116 °C, and T = 162 °C for poly(MA‐co‐HEA)‐g‐(PLLA‐b‐PS2). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 549–560, 2006  相似文献   

6.
A new kind of polymeric chemosensor containing chiral naphthaldimine moiety in the side chain was synthesized by the reversible addition‐fragmentation chain transfer polymerization of N‐{[2‐(4‐vinylbenzyloxy)‐1‐naphthyl]‐methylene}‐(S)‐2‐phenylglycinol (VNP). The resulting polymers (PVNP) showed high selectivity for hydrogen sulfate relative to other anions including F?, Cl?, Br?, H2PO, CH3CO, and NO in tetrahydrofuran (THF) solution as judged from UV?vis, fluorescence, and circular dichroism spectrophotometric titrations. Compared with its monomer, the polymer has proven to be more attractive for detection of HSO in terms of sensitivity and reproducibility. Upon addition of the anion it gives remarkable spectral responses concomitant with detectable color change from colorless to pale yellow. Furthermore, the HSO‐induced CD or fluorescence signal can be totally reversed with addition of base and eventually recovered the initial state, leading to a reproducible molecular switch with two distinguished “on” and “off” states. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
The effect of catalyst dibutyltin dilaurate (DBTDL) on the kinetics of urethane formation reactions of α,ω‐bis(hydroxy)‐terminated fluoropolyethers Fomblin® Z‐DOL TXs (FPEs) of various molecular weights and poly(oxyethylene) glycol PEG‐400 with isophorone diisocyanate (IPDI) in hexafluoroxylene (HFX) and tetrahydrofuran (THF) at 40 °C and NCO:OH = 2:1 have been studied in a broad range of catalyst (0.10–9.00) ×10?4 M and total reagents (10.0–60.1 wt %) concentrations. The rate of tin‐catalyzed second‐order reactions (with respect to diol and diisocyanate) was found to be proportional to the square root of catalyst concentration [DBTDL]0.5 both in low polar (HFX) and polar (THF) solvents. Effect of catalyst saturation was revealed for all the reaction systems at higher DBTDL concentrations as well as the appearance of the limiting catalyst concentrations Clim below which the rates of reaction were close to zero. Based on these findings new effective rate coefficients have been derived k = kcat/(C ? C) that are independent of the total reagent concentration in the range of 10.0–60.1 wt % ([OH] = 0.10–0.91 equiv/L). This new approach highlights that the rate of the tin‐catalyzed urethane formation reactions of α,ω‐bis(hydroxy)‐terminated fluoropolyethers Z‐DOL TXs with IPDI in HFX at 40 °C and NCO:OH = 2:1 increases significantly with increasing MW of FPE from 776 up to 3405. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5354–5371, 2004  相似文献   

8.
Poly(vinyl alcohol) (PVA)/poly(vinyl acetate) (PVAc) microspheres with a skin/core structure were prepared through the heterogeneous surface saponification of PVAc microspheres suspension‐polymerized. The PVA skin formed through the heterogeneous saponification was hydrogel swellable in water. In addition, to obtain monodisperse PVA/PVAc microspheres having various skin/core ratios and morphologies, the ion‐specificities to the heterogeneous saponification were investigated using SO, Cl?, NO, Br?, and I? for anions and Li+, Na+, and K+ for cations, respectively. The ions were not specific significantly to the rate of the heterogeneous saponification, while were related to the degree of saponification (DS). DSs had different values between by weight loss (DSw) and by proton nuclear magnetic resonance spectroscopy (DSNMR) measurements. The order of DSws was SO < Cl? < NO < Br? < I? for anions and K+ < Na+ < Li+ for cations, and that of DSNMRs, I? < Br? < NO < Cl? < SO for anions and Li+ < Na+ < K+ for cations. The differences in values between DSws and DSNMRs were caused by the dissolution of PVA skin and were significantly decreased for SO. The peaks at melting temperature of PVA were sharp and their areas were large for ions deswelling PVA skins.  相似文献   

9.
Non‐transition metal‐catalyzed living radical polymerization (LRP) of vinyl chloride (VC) in water at 25–35 °C is reported. This polymerization is initiated with iodoform and catalyzed by Na2S2O4. In water, S2O dissociates into SO that mediates the initiation and reactivation steps via a single electron transfer (SET) mechanism. The exchange between dormant and active propagating species also includes the degenerative chain transfer to dormant species (DT). In addition, the SO2 released from SO during the SET process can add reversibly to poly(vinyl chloride) (PVC) radicals and provide additional transient dormant ~SO radicals. This novel LRP proceeds mostly by a combination of competitive SET and DT mechanisms and, therefore, it is called SET‐DTLRP. Telechelic PVC with a number‐average molecular weight (Mn) = 2,000–55,000, containing two active ~CH2? CHClI chain ends and a higher syndiotacticity than the commercial PVC were obtained by SET‐DTLRP. This PVC is free of structural defects and exhibits a higher thermal stability than commercial PVC. SET‐DTLRP of VC is carried out under reaction conditions related to those used for its commercial free‐radical polymerization. Consequently, SET‐DTLRP is of technological interest both as an alternative commercial method for the production of PVC with superior properties as well as for the synthesis of new PVC‐based architectures. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6267–6282, 2004  相似文献   

10.
Novel poly(3,4‐ethylenedioxythiophene) (PEDOT) polymers bearing imidazolium‐ionic liquid moieties were synthesized by electrochemical polymerizations. For this purpose, new functional monomers were synthesized having an 3,4‐ethylenedioxythiophene (EDOT) unit and an imidazolium‐ionic liquid with different anions such as tetrafluoroborate (BF), bis(trifluoromethane)sulfonimide ((CF3SO2)2N?), and hexafluorophosphate (PF). Next, polymer films were obtained by electrochemical synthesis in dicholoromethane solutions. Obtained polymers were characterized, revealing the characteristics of PEDOT in terms of electrochemical and spectroelectrochemical properties, FTIR, 1H NMR, and AFM microscopy. Interestingly, the hydrophobic character of electropolymerized films could be modified depending on the anion type. The hydrophobicity followed the trend PF > (CF3SO2)2N? > BF > pure PEDOT as determined by water contact angle measurements. Furthermore, the polymers could be dissolved in a range of polar organic solvents such as dimethylformamide, propylene carbonate, and dimethyl sulfoxide making these polymers interesting candidates for wet processing methods. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3010–3021, 2009  相似文献   

11.
Novel thermoplastic elastomers (TPEs) consisting of poly(isobutylene‐b‐indene) (PIB‐b‐PInd) arms radiating from hexamethylcyclohexasiloxane (D) cores were prepared, characterized, and their properties investigated. The syntheses of these star‐blocks involved the linking by hydrosilation of PInd‐b‐PIB CH2 CHCH2 prearms to D. The prearms were obtained by initiating the living polymerization of Ind by the cumyl chloride (CumCl)/TiCl4 or cumyl methoxide (CumOMe)/TiCl4 systems, continuing by the sequential block copolymerization of IB, and concluding the synthesis by end quenching with allyltrimethylsilane (ATMS). Dedicated experiments were carried out to develop conditions for the various synthesis steps. Select mechanical, thermal, and rheological properties of TPE star‐blocks having 5–18 PInd‐b‐PIB arms have been investigated. Because of the high Tg of the glassy PInd segment (Tg,PInd = 170–220°C), these TPEs maintained their strength at higher temperatures than those of similar polystyrene‐based star blocks. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 279–290, 2000  相似文献   

12.
A series of novel amphiphilic brush‐dendritic‐linear poly[poly(ethylene glycol) methyl ether methacrylate]‐b‐polyamidoamine‐b‐poly(ε‐caprolactone) copolymers (PPEGMEMA‐b‐Dmb‐PCL) (m = 1, 2, and 3: the generation number of dendron) were synthesized by the combination techniques of click chemistry, atom transfer radical polymerization (ATRP), and ring‐opening polymerization (ROP). The brush‐dendritic copolymers bearing hydrophilic brush PPEGMEMA and hydrophobic dendron polyamidoamine protected by the tert‐butoxycarbonyl (Boc) groups [Dm‐(Boc) (m = 1, 2, and 3)] were for the first time prepared by ATRP of poly(ethylene glycol) methyl ether methacrylate monomer (PEGMEMA) initiated with the dendron initiator, which was prepared from 2′‐azidoethyl‐2‐bromoisobutyrate (AEBIB) and Dm‐(Boc) terminated with a clickable alkyne by click chemistry. Then, the brush‐dendritic copolymers with primary amine groups (PPEGMEMA‐b‐Dm) were obtained from the removal of the protected Boc groups of the brush‐dendritic copolymers in the presence of trifluoroacetic acid. The brush‐dendritic‐linear PPEGMEMA‐b‐Dmb‐PCL copolymers were synthesized from ROP of ε‐caprolactone monomer using PPEGMEMA‐b‐Dm as the macroinitiators and stannous octoate as catalyst in toluene at 130 °C. To the best of our knowledge, this is the first report that integrates hydrophilic brush polymer PPEGMEMA with hydrophobic polyamidoamine (PAMAM) dendron and PCL to form amphiphilic brush‐dendritic‐linear copolymers. The amphiphilic brush‐dendritic‐linear copolymers can self‐assemble into spherical micellar structures in aqueous solution. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
The geometries and energetics of transition states (TS) for radical deactivation reactions, including competitive combination and disproportionation reactions, have been studied for the modeled 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO)‐mediated free‐radical polymerization of acrylonitrile with quantum mechanical calculations at the DFT/UB3‐LYP/6‐311+G(3df,2p)//(U)AM1 level of theory (where DFT is density functional theory, AM1 is Austin model 1, and UAM1 is unrestricted Austin model 1). A method providing reasonable starting geometries for an effective search for TS between the TEMPO radical and 1‐cyanopropyl radical mimicking the growing polyacrylonitrile macroradical is shown. For the hydrogen atom abstraction reaction by the TEMPO radical from the 1‐cyanopropyl radical, practically one TS has been found, whereas for the combination reaction of the radicals, several TS have been found, mainly differing in out‐of‐plane angle α of the N? O bond in the TEMPO structure. α in the TS is correlated with the activation energy, ΔE, determined from the single‐point calculation at the DFT UB3‐LYP/6‐311+G(3df, 2p)//UAM1 level for the combination reaction of CH3AN· with the TEMPO radical. The theoretical activation energy for the coupling reaction from DFT UB3‐LYP/6‐311+G(3df, 2p)//UAM1 calculations has been estimated to be 11.6 kcal mol?1, that is, only about 4.5 times smaller than ΔE for the disproportionation reaction obtained with the DFT UB3‐LYP/6‐311+G(3df, 2p)//(U)AM1 approach. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 914–927, 2006  相似文献   

14.
A new dialkylated α‐hydrogenated linear nitroxide and the corresponding 1‐phenylethyl alkoxyamine were synthesized in two and three steps, respectively. The alkoxyamine was involved in the polymerization of styrene at 60 °C, and the in situ concentration of nitroxide was monitored by electron spin resonance spectroscopy. The enhanced characteristics of these new alkylated alkoxyamine and nitroxide (k = 1.5 × 10?4 s?1 and k = 5.7 × 104 L mol?1 s?1) yielded a monomer consumption one order of magnitude higher than styrene thermal polymerization. This resulted in well‐defined polystyrenes up to 70,000 g mol?1 and the observation of a control occurring through the establishment of the radical persistent effect, that is, ln([M]0/[M]) = t2/3. Experimentally determined kinetic constants were involved in PREDICI modelings to investigate the influence of temperature and initial alkoxyamine concentration on the kinetics as well as on the livingness and the controlled character of the polymerization. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
The free radical promoted cationic polymerization cyclohexene oxide (CHO), was achieved by visible light irradiation (λinc = 430–490 nm) of methylene chloride solutions containing thioxanthone‐fluorene carboxylic acid (TX‐FLCOOH) or thioxanthone‐carbazole (TX‐C) and cationic salts, such as diphenyliodonium hexafluorophosphate (Ph2I+PF) or silver hexafluorophosphate (Ag+PF) in the presence of hydrogen donors. A feasible initiation mechanism involves the photogeneration of ketyl radicals by hydrogen abstraction in the first step. Subsequent oxidation of ketyl radicals by the oxidizing salts yields Bronsted acids capable of initiating the polymerization of CHO. In agreement with the proposed mechanism, the polymerization was completely inhibited by 2,2,6,6‐tetramethylpiperidinyl‐1‐oxy and di‐2,6‐di‐tert‐butylpyridine as radical and acid scavengers, respectively. Additionally polymerization efficiency was directly related to the reduction potential of the cationic salts, that is, Ag+PF (E = +0.8 V) was found to be more efficient than Ph2I+PF (E = ?0.2 V). In addition to CHO, vinyl monomers such as isobutyl vinyl ether and N‐vinyl carbazole, and a bisepoxide such as 3,4‐epoxycyclohexyl‐3′,4′‐epoxycyclohexene carboxylate, were polymerized in the presence of TX‐FLCOOH or TX‐C and iodonium salt with high efficiency. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
Acrylamide was polymerized in acetonitrile at 82 °C with a perfluorinated azo‐derivative initiator. The polymerization proceeded heterogeneously. Varying amounts of initiator and monomer were used. The activation energy was deduced from three experiments carried out at 59, 71, and 82 °C. The following kinetic law, deviating a great deal from the classical law, was obtained: R ∼ [I2][M](0.05% < [I2]o/[M]o < 1.00%) and R ∼ [I2][M](1% < [I2]o/[M]o < 7%). These results can be interpreted in light of the contribution of primary radical termination and the emergence of occlusion. The development of a new kinetic relationship allowed us to confirm the existence of both of these termination reactions. The calculation of the kprt /ki · kp ratio was also achieved. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1834–1843, 2000  相似文献   

17.
The synthesis and melt rheology of supramolecular poly(isobutylene) polymers bearing statistically distributed hydrogen‐bonding moieties is reported, aiming at understanding the formation of the underlying supramolecular networks for self‐healing polymers. Two different hydrogen bonds were incorporated into a poly(isobutylene) (PIB) copolymer, one based on a (weak) pyridinium/pyridine interaction, the other based on a (stronger) 2,6‐diaminotriazine/thymine interaction. A direct copolymerization based on living cationic polymerization of isobutene and the comonomers 1 , 2 , and 4 in amounts of 1 mol % lead to the copolymers PIB‐ 1 , PIB‐ 2 , and PIB‐ 4 with a content of ~1 mol % of comonomer and molecular weights ranging from ~2000 to 19,000 g mol?1 (Mw/Mn ~ 1.2–1.5). Subsequent azide/alkyne “click” chemistry enabled the attachment of 2,6‐diaminotriazine‐ and thymine‐moieties to yield the copolymers PIB‐ 5 , PIB‐ 6 , and PIB‐ 7 . Proof of the statistical incorporation of ~1 mol % of hydrogen‐bonding moieties was achieved by 1H NMR spectroscopy and matrix‐assisted laser desorption ionization measurements. The true presence of a supramolecular network in PIB‐ 1 (pyridinium/pyridine interaction) as well as with 1/1 blends of PIBs interacting via the 2,6‐diaminotriazine/thymine interaction (PIB‐ 5 /PIB‐ 6 ) was proven via the increasing plateau modulus with increasing molecular weights (5.5k, 9.9k, 12.4k, 16k, and 19k). Dynamics of the hydrogen bonds in the melt state was investigated by determining the effective cluster lifetime ( τ ) observing a clear difference in the (weaker) pyridinium/pyridine interaction ( τ ~ 1 s) to the 2,6‐ (stronger) diamintriazine/thymine interaction ( τ ~ 100 s). The so‐generated materials will be useful as a basis for self‐healing polymers, as dynamics plays a major role in such polymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
Copolymerizations of methyl 2‐acetamidoacrylate (MAA) with methyl methacrylate (MMA) were carried out at 60 °C in chloroform. Copolymers containing MAA units in the range of 83–90 mol % exhibited a lower critical solution temperature (LCST), although homopolymers of MAA and MMA did not. The LCST of polymer solutions decreased with (1) an increase in the concentration of the copolymer, (2) a decrease in the MAA content in the copolymer, and (3) an increase in the concentration of salts added. The effectiveness of anionic species for reducing the LCST is NO < Cl? < SO < SO. Divalent anion is more effective for lowering the LCST than monovalent anion. However, there is no difference between cationic species in the salting‐out effect. Sodium carbonate and sodium phosphate had a salting‐in effect. Salting‐out coefficients were evaluated from the relationship between the logarithm of solubility of the copolymers and the salt concentration. Salting‐out coefficients of the copolymer depended not on the composition of the copolymers but on the salt added. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1945–1951, 2002  相似文献   

19.
Three molecules of 5-(bromoacetyl)salicylate ( 1 ) complexed to uranyl UO ion were crosslinked with branchy poly(ethylenimine) (PEI) in DMSO by alkylation of amino groups of PEI with 1, leading to the formation of UO2(Sal) PEI. Upon demetalation of UO2(Sal) PEI with HCl, apo(Sal) PEI was obtained. Based on the pH dependence of log Kf for UO2(Sal) PEI, it was concluded that each uranyl binding site in UO2(Sal) PEI or apo(Sal) PEI contains three salicylate moieties. In terms of the equilibrium constant for formation of the uranyl complex, apo(Sal) PEI was found to be comparable to or better than the previously reported effective uranophiles. In terms of the rates for the formation of the uranyl complex, however, apo(Sal) PEI was far superior to those other uranophiles. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2935–2942, 1997  相似文献   

20.
Diazonium group–substituted polystyrene (PS–N) micrometer‐sized spheres with narrow distribution were prepared from highly crosslinked polystyrene particles. Then a composite sphere was prepared with the micro‐PS–N sphere as core and submicrometer‐sized poly(styrene‐methyl methacrylate‐acrylic acid) [P(S‐MMA‐AA)] colloids or nanometer‐sized SiO2 particles as shell via columbic interaction. The ionic linkages between the core and shell convert to covalent bonds in the thermal treatment process. As a result, the composite sphere becomes very stable toward polar solvents as well as toward ultrasonic treatment. A hollow SiO2 micrometer‐sized sphere then was achieved by removing the core under sintering conditions (700 °C). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4284–4288, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号