首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effect of the electron–acceptor substituent CF3SO2 at the imine nitrogen atom on the basicity and the electron distribution in N,N‐alkylformamidines ( 1 , 2 , 3 , 4 , 5 ) was studied experimentally by the FTIR spectroscopy and theoretically at the DFT (B3LYP/6‐311+G(d,p)) level of theory, including the natural bond orbital (NBO) analysis. The calculated proton affinities of the imine nitrogen atom and the sulfonyl oxygen (PAN′ and PAO) depend on the atomic charges, the C?N′ and N′―S bond polarity and on the energy of interaction of the amine nitrogen and the oxygen lone pairs with antibonding π* and σ*‐orbitals. The basicity of the imine nitrogen atom is increased with the increase of the electron‐donating power of the substituent at the amine nitrogen atom due to stronger interaction nN → π*C?N′, but is decreased for the electron‐withdrawing groups MeSO2 and CF3SO2 at the imine nitrogen atom in spite of the increase of this conjugation. Protonation of ( 1 , 2 , 3 , 4 , 5 ) in CH2Cl2 solution in the presence of CF3SO3H occurs at the imine nitrogen atom, while the formation of hydrogen bonds with 4‐fluorophenol takes place at the sulfonyl oxygen atom, whose basicity is lower than that of N,N′‐dimethylmethanesulfonamide but higher than of N,N′‐dimethyltrifluoromethanesulfonamide. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Density functional theory studies on cyclic nitramines were performed at B3LYP/6‐311G(d,p) level. The crystal structures were obtained by molecular packing calculations. Heats of formation (HOFs) were predicted through designed isodesmic reactions. Results indicate that the value of HOF relates to the number of =N–NO2 group and aza nitrogen atom and increases with the augment of the number of =N–NO2 group and aza nitrogen atom for cyclic nitramines. Detonation performance was evaluated by using the Kamlet–Jacobs equations based on the calculated densities and HOFs. All the cyclic nitramines exhibit better detonation performance than 1,3,5‐trinitro‐1,3,5‐triazacyclohexane and 1,3,5,7‐tetranitro‐1,3,5,7‐tetraazacyclooctane. The stability of cyclic nitramines was investigated by the bond dissociation energies. The result shows that the increase of =N?NO2 group or aza nitrogen atom reduces the stability of the title compounds. These results provide basic information for molecular design of novel high energetic density materials. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
DFT computations have been performed on nucleophilic substitutions of phenacyl bromides with pyridines to investigate the mechanism of the reaction. In contrast with earlier suppositions, tetrahedral intermediate is not formed by the addition of pyridine on the C?O group of phenacyl bromide, because the total energy of the reacting species increases continuously, when the distance between the N and C(?O) atoms of reactants is shorter than 2.7 Å. At a greater distance, however, a bridged complex of the reactants is observed, in which the N atom of pyridine is slightly closer to the C atom of the C?O, than to the C atom of the CH2Br group of phenacyl bromide, the distances are 2.87 and 3.05 Å, respectively. The attractive forces between the oppositely polarized N and C(?O) atoms in the complex decrease the free energy of activation of the SN2 attack of pyridine at the CH2Br group. The calculated structural parameters of the SN2 transition states (TS) indicate, that earlier TSs are formed when the pyridine nucleophile bears electron‐donating (e‐d) groups, while electron‐withdrawing (e‐w) groups on phenacyl bromide substrate increase the tightness of the TS. Free energies of activation computed for the SN2 substitution agree well with the data calculated from the results of kinetic experiments and correlate with the σPy substituent constants, derived for pyridines, and with the Hammett σ constants, when the substituents (4‐MeO‐4‐NO2) are varied on the pyridine or on the phenacyl bromide reactants. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Early afterglows of N2 and N2‐O2 flowing microwave discharges are characterized by optical emission spectroscopy. The N and O atom and N2(A) metastable molecule densities are determined by optical emission spectroscopy after calibration by NO titration for N‐atoms and measurements of NO and N2 band intensities for O‐atoms and N2(A) metastable molecules. By using N2 tanks with 50 and 10 ppm impurity, it is determined in the afterglow an O‐ atom impurity of 150‐200 ppm. Variations of the N and O‐atom and N2(A) metastable molecule densities are obtained in the early afterglow of N2–(9·10–5–3·10–3)O2 gas mixtures. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The substituent effect on 13C NMR of the C?N in benzylidene anilines XPhCH?NPhY was investigated, in which the substituents X and Y are in p‐position or in m‐position of the two aromatic rings. The substituent effects including the inductive effects of X and Y, the conjugative effects of X and Y, and the substituent specific cross‐interaction effect were put into one model to quantify the 13C NMR chemical shift δC(C?N) of the C?N in XPhCH?NPhY. A penta‐parameter correlation equation with correlation coefficient 0.9975 and standard error 0.17 ppm was obtained for 80 samples of compounds. The result shows that the substituents X and Y have an opposite effect on the δC(C?N). The electron‐withdrawing effects of X decrease the δC(C?N); while the electron‐donating effects of X increase the δC(C?N). In contrast, the electron‐withdrawing effects of Y increase the δC(C?N); while the electron‐donating effects of Y decrease the δC(C?N). A new substituent specific cross‐interaction effect parameter Δσ2 was proposed, which indicates that the most substituent specific cross‐interaction effect exists in the pair of max electron‐withdrawing group (EWG) and max electron‐donating group (EDG) or the pair of max EDG and max EWG. Further to verify the obtained correlation equation, 15 samples of model compounds were prepared and their δC(C?N) was measured in this work. The predicted δC(C?N) values with the obtained equation are in good agreement with the measured ones for these prepared compounds, which confirmed the reliability of the obtained equation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
ABSTRACT

Hydrogen storage reactions on Ni ? C59X(X = B, N) heterofullerene are investigated by using the state-of-the-art density functional theory calculations. The Ni atom prefers to bind at the bridge site between two hexagonal rings, and can bind up to five hydrogen molecules with average adsorption energies of (?0.94, ?0.48, ?0.33, ?0.25 and ?0.20 eV) per hydrogen molecule for Ni ? C59B, while (?1.20, ?0.60, ?0.41, ?0.28 and ?0.23 eV) per hydrogen molecule for Ni ? C59N. With no metal clustering, the system gravimetric capacities are expected to be as large as 10.87 and 10.85 wt % for 5H2NiC59B?and 5H2NiC59N, respectively. While the desorption activation barriers of the complexes 1H2 + C59X?(X = B, N)?are outside the Department of Energy domain (?0.2 to ?0.6 eV), the desorption activation barriers of the complexes nH2 + C59X(X = B, N)(n = 2 ? 5) are inside this domain. The hydrogen storage of the irreversible 1H2 + NiC59X?(X = B, N) and reversible 2H2 + NiC59X?(X = B, N) interactions is characterised in terms of density of states and projected densities of states, pairwise and non-pairwise additivity, infrared, Raman, electrophilicity and molecular electrostatic potentials.  相似文献   

7.
The rate constant for the 3 body atom recombination N + H + M with M = Ar has been measured over the temperature range 550 to 750 K in an Ar ? N2 ? H2 microwave flowing discharge. A temperature dependence for the rate constant is reported.  相似文献   

8.
4‐Alkyl‐2,2,6,6‐tetramethyl‐1,4,2,6‐oxaazadisilinanes RN[CH2Si(Me)2]2O [R = Me ( 1 ), i‐Pr ( 2 )] were synthesized by two methods which provided good yields up to 84%. Low temperature NMR study of compounds ( 1 ) and ( 2 ) revealed a frozen ring inversion with the energy barriers of 8.5 and 7.7 kcal/mol at 163 and 143 K, respectively, which is substantially lower than that for their carbon analog, N‐methylmorpholine. DFT calculations performed on the example of molecule ( 1 ) showed that N? Meax conformer to exist in the sofa conformation with the coplanar fragment C? Si? O? Si? C, and its N? Meeq conformer in a flattened chair conformation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
In this work, a facile and low‐temperature water evaporation approach to prepare columnar superstructures consisting of face centered cubic (fcc) Cu2?xSe nanoflakes stacked along 〈111〉 direction is reported. Formation of such unique stacked nanoflake assemblies is resulted from oriented attachment of isolated hexagonal CuSe nanoflakes along the 〈001〉 direction with a ripening effect driven by solvent evaporation, and then followed by a phase conversion into fcc Cu2?xSe. Evolution from hexagonal CuSe nanoflakes to fcc Cu2?xSe columnar superstructures results in obvious red‐shift of band‐gap absorption edge from 670 to 786 nm and dramatically decreased Raman resonance band intensity of the Se–Se stretching mode at 259 cm?1 due to the phase conversion and composition variation. Remarkably, the Cu2?xSe columnar superstructures are employed as low‐cost and highly efficient counter electrodes (CEs) in quantum dot sensitized solar cells, exhibiting excellent electrocatalytic activity for polysulfide electrolyte regeneration. A ZnSe/CdSe cosensitized solar cell using the Cu2?xSe CE shows a significant increase in fill factor and short‐current density (JSC) and yields a 128% enhancement in power conversion efficiency as compared to the traditional noble metal Pt CE.  相似文献   

10.
For N‐{[2‐(hydroxymethyl)‐2H‐1,2,3‐triazolyl‐4‐yl]methyl}triflamide 1 , N‐{[2‐(hydroxymethyl)‐2H‐1,2,3‐triazolyl‐4‐yl]methyl}‐N‐phenyltriflamide 2 , and N,N‐bis{[2‐(hydroxymethyl)‐2H‐1,2,3‐triazolyl‐4‐yl]methyl}triflamide 3 , the proton affinities of the triazole nitrogen atoms and the hydroxy and sulfonyl oxygen atoms as well as the energies of formation of the conformers with intramolecular H‐bonds and dimers with intermolecular NH?N, OH?N, OH?O═S, and NH?O═S H‐bonds were calculated by density functional theory and second‐order Møller‐Plesset perturbation methods. Quantum Theory of Atoms in Molecules analysis was performed to investigate the nature of H‐bonds. According to Fourier transform infrared spectroscopy, in CH2Cl2 solution, the monomeric molecules of 1 to 3 exist in the equilibrium with cyclic dimers having the OH?N hydrogen bonds.  相似文献   

11.
Antioxidant effects of phenothiazine (PtzNH), phenoxazine (PozNH), and iminostilbene (IsbNH) on the oxidation of linoleic acid (LH) and DNA induced by 2,2′‐azobis(2‐amidinopropane) dihydrochloride (AAPH) were investigated in this work. LH was suspended in the liposome of dipalmitoyl phosphatidylcholine (DPPC) to mimic a biomembrane. In the course of AAPH‐induced oxidation of LH, the inhibition period (tinh) generated by PtzNH, PozNH, and IsbNH was proportional to the concentrations of PtzNH, PozNH, and IsbNH employed. The abilities of PtzNH, PozNH, and IsbNH to protect LH were similar to that of trolox (6‐hydroxyl‐2,5,7,8‐tetramethylchroman‐2‐carboxylic acid). Quantum chemical calculations elucidated that the nonplanar configurations of PtzNH, PozNH, and IsbNH transformed to planar ones when they were converted into radicals. In addition, spin‐densities (SDs) on the N atom in the radicals derived from PtzNH, PozNH, and IsbNH were calculated. The N atom in the radical of PtzNH possessed the lowest SD, indicating that the radical of PtzNH was the most stable one. Moreover, PtzNH, PozNH, and IsbNH were applied to protect the DNA against AAPH‐induced oxidation, in which PozNH and IsbNH were able to generate tinh. The tinh generated from PozNH and IsbNH was also proportional to their concentrations. The antioxidant effect of PozNH on the oxidation of DNA was higher than that of IsbNH. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
An effective degradation reaction of CH2Cl2 by bispidine (3,7‐diazabicyclo[3.3.1]nonane, C7H12(NH)2, 1 ) is reported. The reaction starts as low as ?20 °C and is quantitative with respect to 1 . The overall reaction implies nucleophilic substitution of chloride, followed by a series of cascading acid–base reactions, ending with the formation of two easily separable products, one being soluble and the other insoluble. The starting 1 , the intermediates, and the products show a variety of interesting solid‐state structures, associated with plasticity, N–H?N and N–H?Cl?H–N hydrogen bonding, and polymorphism. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
《X射线光谱测定》2006,35(5):287-295
The local structures of Hf? O? N thin films were analyzed using an extended x‐ray absorption fine structure (EXAFS) study of the Hf L3‐edge and first‐principles calculations. Depending on their composition and atomic configurations, Hf4O5N2 [coordination number (CN): 6.25], Hf4O2N4 (CN: 5.5) and Hf4O2N4 (CN: 5.0) were suggested as the local structures of Hf? O? N thin films. Using the suggested local structures, the electronic structures of Hf? O? N thin films were calculated. The variations of the valence band were analyzed with the film composition and compared with the experimental valence band. The optical band gaps of Hf? O? N thin films were compared with the calculated values. The transition rate for the optical absorption was suggested as another reason for the band gap difference. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
Li Wang  Na Wang  Hongqing He 《Molecular physics》2014,112(11):1600-1607
The reaction mechanisms of methylhydrazine (CH3NHNH2) with O(3P) and O(1D) atoms have been explored theoretically at the MPW1K/6-311+G(d,p), MP2/6-311+G(d,p), MCG3-MPWPW91 (single-point), and CCSD(T)/cc-pVTZ (single-point) levels. The triplet potential energy surface for the reaction of CH3NHNH2 with O(3P) includes seven stable isomers and eight transition states. When the O(3P) atom approaches CH3NHNH2, the heavy atoms, namely N and C atoms, are the favourable combining points. O(3P) atom attacking the middle-N atom in CH3NHNH2 results in the formation of an energy-rich isomer (CH3NHONH2) followed by migration of O(3P) atom from middle-N atom to middle-H atom leading to the product P6 (CH3NNH2+OH), which is one of the most favourable routes. The estimated major product CH3NNH2 is consistent with the experimental measurements. Reaction of O(1D) + CH3NHNH2 presents different features as compared with O(3P) + CH3NHNH2. O(1D) atom will first insert into C–H2, N1–H4, and N2–H5 bonds barrierlessly to form the three adducts, respectively. There are two most favourable paths for O(1D) + CH3NHNH2. One is that the C–N bond cleavage accompanied by a concerted H shift from O atom to N atom (mid-N) leads to the product PI (CH2O + NH2NH2), and the other is that the N–N bond rupture along with a concerted H shift from O to N (end-N) forms PIV (CH3NH2 + HNO). The similarities and discrepancies between two reactions are discussed.  相似文献   

15.
The rotational spectra of the OH and OD isotopic species have been observed for three rotamers of 3-fluoro-1-propanol. One of them (HBC form) displays an internal hydrogen bond with a distorted chair conformation of the six-membered ring. The other two rotamers have the oxygen atom gauche with respect to the C2C3 bond, the hydroxyl hydrogen trans with respect to the C1C2 bond and the fluorine atom gauche (GGT form) and trans (TGT form), respectively, with respect to the C2C1 bond. The energies of the vibrational ground states of the HBC and TGT forms are ~0.4 and 1.0 kcal/mole higher than that of the GGT form, respectively (from relative intensity measurements). The hydrogen bond is therefore rather weak in this compound. With compounds capable of forming OH?O or OH?N bonds, the conformation appropriate for hydrogen bonding is normally the most stable form. Several excited states have been analyzed for the TGT and GGT rotamers in order to have additional data with respect to the potential function for the internal rotation about the C3C2 bond.  相似文献   

16.
The formation of intramolecular hydrogen bonding by certain N‐substituted 2‐acylpyrroles has been demonstrated by B3LYP/aug‐cc‐pVDZ calculations, the quantum theory of atoms in molecules, and the natural bond orbital method. Total electron energy densities HBCP at the bond critical point of the H?O bond were applied to analyze the strength of these interactions. The relations between quantum theory of atoms in molecules, carbonyl stretching vibrational modes νC = O, and natural bond orbital parameters associated with the formation of the C–H?O interaction have been established. The short contacts were found experimentally in the crystal structure of a new 2‐acylpyrrole derivative 5‐chloro‐2‐oxopentyl‐1‐(5‐chloro‐2‐oxopentyl)pyrrolo‐2‐carboxylate. The influence of 2‐ and N‐substitution of 2‐acylpyrroles on C‐H?O interaction energy is discussed. It was found that the methylene group may act as a proton donor leading to a red‐shift or blue‐shift phenomenon of the νC–H stretching mode. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
In this present work, using density functional theory and time‐dependent density functional theory methods, we theoretically study the excited‐state hydrogen bonding dynamics and the excited state intramolecular proton transfer mechanism of a new 2‐phenanthro[9,10‐d]oxazol‐2‐yl‐phenol (2PYP) system. Via exploring the reduced density gradient versus sign(λ2(r))ρ(r), we affirm that the intramolecular hydrogen bond O1‐H2?N3 is formed in the ground state. Based on photoexcitation, comparing bond lengths, bond angles, and infrared vibrational spectra involved in hydrogen bond, we confirm that the hydrogen bond O1‐H2?N3 of 2PYP should be strengthened in the S1 state. Analyses about frontier molecular orbitals prove that charge redistribution of 2PYP facilitates excited state intramolecular proton transfer process. Via constructing potential energy curves and searching transition state structure, we clarify the excited state intramolecular proton transfer mechanism of 2PYP in detail, which may make contributions for the applications of such kinds of system in future.  相似文献   

18.
A theoretical study on the nature of hydrogen bond for formamide and its heavy complexes (CYHNH2···XH; Y?O, S, Se, Te; X?F, HO, NH2) was performed on the basis of density functional theory and the quantum chemistry analysis. Except for the CYHNH2···NH3 complexes, the substitution of O atom at formamide with less electronegative atoms (S, Se, and Te) is found to weaken the hydrogen bond (H‐bond). This substitution results in cyclic structure of hydrated and ammoniated formamide complexes by the formation of bifunctional H‐bonds (Y···H4X; X···H3C). Natural bond orbital analysis indicates that the H‐bond is weakened because of less charge transfer from a lone pair orbital of H‐bond acceptor to antibonding orbital of H‐bond donor. The quantum theory of atoms in molecules analysis reveals that the acyclic structure with single H‐bond stabilizes the complexes more than the cyclic structure formed by bifunctional H‐bonds. Natural energy decomposition analysis (NEDA) and block‐localized wavefunction energy decomposition (BLW‐ED) analyses show that the H‐bond stabilization energies of NEDA and BLW‐ED have good correlation with the dissociation energy of formamide complexes and charge transfer from donor to acceptor atom play an important role in H‐bonding. We have also studied the low‐lying electronic excited states (T1, T2, and S1) for CYHNH2···H2O complexes to explore the nature of H‐bond on the basis of electronegativity and found that NEDA also establishes a good correlation with relative electronic energy (with respect to their ground state) and H‐bond strength at their excited states. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper we describe the unprecedented reaction between α‐diazo esters 1 and iodine. The reaction, carried out in the presence of aqueous NaHCO3, afforded the Z‐isomer of the corresponding unsaturated‐2‐iodo ester 8 . The configuration of compounds 8 was determined using the 3JC? H coupling between carbonyl carbon atom and alkene proton. Mechanistic considerations accounting for the observed phenomena and including quantum chemical calculations are proposed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Extended Huckel calculations on the pi systems of polyazine, ?CHNNCH?x, and polyazoethene, ?CHCHNN?x, are reported. Two methods were used to find polymer band properties: extrapolation to infinite length of a series of long chain molecules and by the tightbinding method using a basis set derived from monomer (four atom) molecular orbitals. For both polymers in the all trans configuration, four pi bands are found with the lower two filled and the upper two empty. The band gap in polyazoethene is found to be 0.4 to 0.7 eV, while the band gap in polyazine is 1.9 to 2.3 eV implying that polyazoethene is expected to be a substantially better semiconductor than polyazine. Analysis of the long chain wave functions shows that the bonding and antibonding functions of the dimers CC and NN for polyazoethene or CN for polyazine are the appropriate orbitals to consider for describing the band properties of these polymers, and this is the starting point for the tightbinding calculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号