首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Variation of free‐volume parameters—average radius size, number concentration, and size distribution—of a polyacrylamide (PAAm) gel containing 4 mol % carboxylate anions is studied during a volume phase transition (VPT) caused by a change of sodium chloride (NaCl) concentration. A positron annihilation lifetime technique is used for the determination of the free‐volume characteristics. The measurement is performed in an acetone–water 3 : 2 (v/v) [0.27 : 0.73 (mol/mol)] mixed solvent at 20°C, and the free‐volume parameters deduced from the analysis of a positron annihilation curve are utilized. An average free‐volume size of the swollen PAAm gel, ∼ 0.32 nm in radius, almost agrees with that of the mixed solvent for a corresponding salt concentration, while the size of the collapsed gel, which is ∼ 0.28 nm in radius, is smaller than that of the mixed solvent. The results for the collapsed gel indicate that the hydrogen bond plays a significant role in the nanoscopic environment. The radius of the free‐volume of the swollen PAAm gel seems to be influenced by the composition between acetone and water. An inhomogeneity of the nanoscopic structure inside the PAAm gels is discussed in terms of a dispersion of a size distribution of the free‐volume. It is concluded that a change of the nanoscopic environment of the PAAm gel during the VPT can be monitored through the free‐volume parameters obtained by the positron annihilation lifetime technique. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2634–2641, 1999  相似文献   

2.
Changes of the water content in drawn silk during drying were investigated by thermal analysis and 1H pulse NMR. Water in liquid silk by drawing extruded from the inside of the silk filament into ambient air. The water contents in the drawn silk decreased with drying time. Assuming the nonfreezing water has a concentration of 10 wt % in the liquid silk, the percentage distribution of water in liquid silk is composed of 10 wt % nonfreezing water, 40 wt % freezing water, and 30 wt % free water. This 40 wt % freezing water in the liquid silk may be important for the formation of fine pores on the surface of drawn silk. The apparent pore radius, which was calculated from the results of thermal analysis, on the surface of drawn silk decreased to 5.0 nm and finally to 2.0 nm. The calculated apparent fine pore formed on the surface by drawing was 4.0 nm. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 274–280, 2003  相似文献   

3.
The macroscopic volume shrinkage and swelling of poly(N-isopropylacryl-amide) (PNIPA) gel induced by the compositional change in the methanol–water mixed solvent is correlated to the change in the nanoscopic free volume size and numerical concentration formed in the PNIPA gels. The free volume size and numerical concentration are estimated from the longest component appearing in the positron annihilation lifetime curves. The apparent free volume fraction calculated by the free volume size and numerical concentration, and dispersion of the free volume deduced by the size distribution are utilized to analyze the origin and location of the free volumes. The free volume parameters obtained by analysis of the positron annihilation data show various nanoscopic phases occuring within the PNIPA gels during the volume change, implying the variation of the strength of the interactions among the solvent molecules and the polymer chains of the PNIPA. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1141–1151, 1998  相似文献   

4.
The effect of an added polyanion, sodium poly(styrene sulfonate) (NaPSS), on the thermoreversible gelation and remelting of gelatin gels has been investigated by polarimetry and rheology. The presence of NaPSS can either enhance or reduce collagenlike helix formation, depending on the polymer concentration relative to that of gelatin and the gelation temperature. At temperatures < 20°C, the helical content is reduced by increasing the amount of added NaPSS, demonstrating the disruption of helical structure of gelatin by the polyanion. Synchronous measurements of optical rotation and modulus at 25°C, in both gelation and remelting, indicate that the optical rotation at the gel point for the pure gelatin is lowered on addition of NaPSS. At low frequency, the storage modulus of gelatin is increased by the addition of a small amount of NaPSS relative to that of gelatin, but decreased with excess NaPSS. The mechanical properties of gelatin with and without NaPSS will be discussed in light of the competition between network junction formation by strands of triple helices among gelatin chains and temporary ionic crosslinking between gelatin and the polyanion. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2287–2295, 1999  相似文献   

5.
Dynamical motion of water sorbed in reverse osmosis polyamide membrane (ROPM) material is reported as studied by quasielastic neutron scattering (QENS) technique. The ROPM studied here has pore size of 4.4 Å as determined by positron annihilation lifetime spectroscopy. Analysis of the QENS data showed that diffusion behavior of the water within the membrane is describable by random jump diffusion model. A much longer residence time is found as compared to bulk water. Positive shift of the freezing point as observed in differential scanning calorimetry indicates presence of strong attractive interaction corroborating the slower diffusivity as observed in QENS.  相似文献   

6.
Positron annihilation lifetime spectroscopy was used to characterize the reentrant volume‐phase‐transition behavior of poly(N‐isopropyl acrylamide) hydrogel in an ethanol/water mixed solvent. The polymer gel was synthesized with γ irradiation. The ortho‐positronium lifetime (τ3) in the gel slowly increased with an increase in the ethanol content in the mixed solvent. τ3 was not influenced by the volume phase transition. The ortho‐positronium intensity decreased with the collapse of the gel in an approximately 10% ethanol/water mixture. When swelled in pure ethanol, τ3 initially increased with the solvent amount in the gel, showing the destruction of intramolecular hydrogen bonding and the relaxation of polymer chains. The lower critical solution temperature of the gel in the 10% ethanol/water mixture was lower than that in pure water, and τ3 for various solvent contents showed behavior similar to that seen in pure solvent. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1028–1036, 2002  相似文献   

7.
The variations of size, intensity, and size distribution of free volumes generated in the network of molecular chains of gelatin at the sol-gel transition were studied by means of the positron annihilation lifetime technique. Although variation in average free-volume radius was not recognized, a variation of free-volume content was observed at the sol-gel transition point of gelatin with an addition of saccharose.  相似文献   

8.
The temperature‐sensitive poly(N‐isopropylacrylamide) hydrogels, prepared by γ and electron‐beam (EB) irradiation, were studied using positron annihilation lifetime spectroscopy (PALS). The effect of water content in the hydrogel on the ortho‐positronium (o‐Ps) lifetime and intensity was investigated. The observed positronium lifetime suggests microstructural differences between γ‐ and EB‐synthesized hydrogels. The distribution in positronium lifetime indicates nonhomogeneity in the distribution of free‐volume holes in EB‐synthesized hydrogels. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3462–3466, 2000  相似文献   

9.
Open spaces in the subsurface region (<10 μm) of very low density polyethylene were probed by a monoenergetic positron beam. From measurements of Doppler broadening spectra measurements of the annihilation radiation and the lifetime spectra of positrons as a function of incident positron energy, the size of the open spaces in the region of 0–3 μm was found to be larger than that in the deeper region. This was attributed to the cooperative motion of large segments of molecules which is activated near the surface. After the freezing in of such motions (below 230 K), although the lineshape parameter S in the bulk was almost constant, S in the region of 0–3 μm decreased with decreasing temperature. This discrepancy was associated with the presence of the open spaces with an excess content and the resultant contraction of amorphous structure near the surface. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2597–2605, 1998  相似文献   

10.
制备了高度水合状态的纤维素凝胶, 研究了水在凝胶中的存在状态及其对纤维素结晶的影响. 结果表明, 水在纤维素水凝胶中存在非冻结水、 可冻结水和自由水3种状态. 非冻结水饱和含量为一般纤维素吸附水中不可冻结水的5倍以上, 高达1.6 g/g. 纤维素在水合状态下结晶受到抑制, 随着水含量的减小, 结晶会趋于完善. 在环境温度下, 当纤维素中只存在非冻结水时, 其与纤维素分子链间氢键作用力不稳定, 对纤维素结晶抑制作用较弱, 纤维素结晶比较完善, 导致纤维素断裂时表现为脆性断裂. 水介质的引入有望为纤维素的利用开发提供一种新的思路.  相似文献   

11.
Hydrating cement pastes prepared with water-to-cement ratio equal to 0.5 in weight were investigated through positron annihilation lifetime spectroscopy over a period of 4 weeks. Two series of samples were prepared using different pre-treatment procedures, in order to assess the influence of sample manipulations on positron annihilation measurements. The technique is sensitive to changes in the pore structure with ageing time. Moreover, from the positron data an estimate of the first two moments of radii distribution of the nanopores was obtained.  相似文献   

12.
Melting and freezing of water in cylindrical silica nanopores   总被引:1,自引:0,他引:1  
Freezing and melting of H(2)O and D(2)O in the cylindrical pores of well-characterized MCM-41 silica materials (pore diameters from 2.5 to 4.4 nm) was studied by differential scanning calorimetry (DSC) and (1)H NMR cryoporometry. Well-resolved DSC melting and freezing peaks were obtained for pore diameters down to 3.0 nm, but not in 2.5 nm pores. The pore size dependence of the melting point depression DeltaT(m) can be represented by the Gibbs-Thomson equation when the existence of a layer of nonfreezing water at the pore walls is taken into account. The DSC measurements also show that the hysteresis connected with the phase transition, and the melting enthalpy of water in the pores, both vanish near a pore diameter D* approximately equal to 2.8 nm. It is concluded that D* represents a lower limit for first-order melting/freezing in the pores. The NMR spin echo measurements show that a transition from low to high mobility of water molecules takes place in all MCM-41 materials, including the one with 2.5 nm pores, but the transition revealed by NMR occurs at a higher temperature than indicated by the DSC melting peaks. The disagreement between the NMR and DSC transition temperatures becomes more pronounced as the pore size decreases. This is attributed to the fact that with decreasing pore size an increasing fraction of the water molecules is situated in the first and second molecular layers next to the pore wall, and these molecules have slower dynamics than the molecules in the core of the pore.  相似文献   

13.
The effect of Na bentonite, Ca bentonite, and kaolin fillers on the macrostructure and microstructure of acrylonitrile butadiene rubber, ethylene propylene diene rubber, and their blend (50/50) was studied through electrical and mechanical measurements, as well as with positron annihilation lifetime spectroscopy. The real part of permittivity (ε′), dielectric loss (ε″), and the crosslinking density were found to increase with increasing filler content. The increase of crosslinking density of the blend with increasing amount of fillers reflects a decrease in the equilibrium swelling up to 21.50 wt % compared with that of the unfilled blends. The mechanical investigation showed pronounced increase in the tensile strength, and in elongation at break with the addition of up to 21.50 wt % of filler. In addition, comparing between different fillers showed that the reinforcing effect of Na bentonite is more effective than Ca bentonite and kaolin but the physico‐mechanical of Ca bentonite is less than that for kaolin. The positron annihilation lifetime measurements revealed that the free‐volume properties were strongly affected by the amount and type of filler, in particular, the free‐volume fraction was dramatically decreased with increasing filler content. Furthermore, correlations were made between the free‐volume parameters and both electrical and mechanical properties. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1825–1838, 2009  相似文献   

14.
The pore structure of NiO/γ-Al2O3 catalysts is characterized by positron lifetime and Doppler broadening measurements. A very long lifetime τ4 of 92 ns is resolved from the positron lifetime spectrum measured for pure Al2O3, which could be attributed to the ortho-positronium (o-Ps) lifetime in large pores. It was also found that the fitted lifetime τ4 and its corresponding intensity I4 obtained from the lifetime spectra both decrease with narrowing energy window of the stop channel in the fast–fast coincidence lifetime measurement system. This suggests that the ultra long lifetime is primarily due to the self annihilation of o-Ps which emits three gamma-rays. Such 3γ annihilation is further evidenced by measuring the Doppler broadening of annihilation gamma rays in coincidence with the prompt gamma rays (1.28 MeV) emitted from the 22Na positron source. In NiO/γ-Al2O3 catalysts both the lifetime τ4 and its intensity I4 decreases with increasing NiO content (from 3 wt% to 40 wt%), which indicates decreasing of the number of 3γ events. The 3γ annihilation parameter analyzed from the coincidence Doppler broadening spectrum shows consistent decrease with increasing NiO content.  相似文献   

15.
Changes in the free‐volume parameters of polyacrylamide (PAAm) gels during the volume phase transition (VPT) were studied with the positron annihilation lifetime technique. The VPT was induced through the variation of the solvent composition in a mixture of acetone and water. The PAAm gels containing 0 and 4 mol % carboxyl groups in their polymer chains were adapted to compare the effect of the presence of ionic groups on the microscopic environment. The change of the free‐volume property is discussed on a nanoscopic scale, with attention paid to the interactions between the polymer chains and the solvent molecules. It is proven that the variations of the free‐volume parameters correlate significantly with the VPT phenomenon. The results of the free volume for both gels are well‐explained when an interaction parameter, εg, is assumed. The interpretation suggests that the state of the interactions among the components (the polymer chain, acetone, and water molecules) plays an important role in the change of the free volume of PAAm gels during the VPT. An increase of the dispersion of the free‐volume size near the VPT point was observed for the ionized PAAm gel. The broadened size distribution of the free volume of the ionized PAAm gel around the VPT point lay between those of pure water and the corresponding mixed solvent, suggesting that a local minimum of the average free‐volume size at the VPT point is caused by the increase of a specific interaction, hydrogen bonding. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 922–933, 2000  相似文献   

16.
The structural changes in methylcellulose containing poly(ethylene glycol) (PEG 400) as plasticizer caused by water absorption during storage were evaluated. In order to elucidate the structural changes in the polymer, water‐uptake measurements and positron annihilation lifetime spectroscopy (PALS) were utilized. The PEG concentrations relative to the total polymer content were varied within the range 0–75% w/w. The Doppler‐spectra were characterized by means of the conventional parameters S and W. A transition from a single phase to two phases was found in the methylcellulose films above PEG; a content of 33% w/w. The first step of ageing is merely a conformational change, after which the electron structure remains more or less the same, while both S and W indicate significant changes during the second slow step of ageing. Accurate determination of the plasticizer concentration relating to the single‐phase to two‐phase transition of Metolose‐PEG films has a great impact from the aspect of the application of a stable composition for coating of solid dosage forms. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
The relation between the self-diffusion coefficient, Dself, of water and the free volume hole size, Vh, has been investigated in a hydroxypropyl methylcellulose (HPMC)-water system in the water content range 0.08-0.36 w/w, at room temperature. Furthermore, the thermal properties of the water in the HPMC-water system, as measured with differential scanning calorimetry (DSC) and the tensile storage, E′, and tensile loss, E″, moduli, of the HPMC-water systems, as determined with dynamic mechanical analysis (DMA), have been probed. Pulsed-field gradient nuclear magnetic resonance (PFG NMR) was used to measure the Dself of water and positron annihilation lifetime spectroscopy (PALS) was used to measure the ortho-Positronium (o-Ps) lifetime in the HPMC-water system. The glass transition temperature of the HPMC was found to be reduced by the water to room temperature in the water content range 0.10-0.15 w/w. The relation between ln Dself of water and the inverse free volume hole size of the HPMC-water system was non-linear. Furthermore, the PALS measurements showed that molecular water co-existed with water clusters in the HPMC-water system.  相似文献   

18.
The positron annihilation lifetime measurements have been performed on a number of amorphous styrene–methyl acrylate copolymers and styrene–butyl methacrylate copolymers. The densities of copolymers were obtained with immersion method by using a capillary pycnometer and the average molecular weights were determined by gel chromatography. The lifetime τ3 of ortho‐positronium (o‐Ps) pick‐off annihilation have been found to correlate with side group volume and polarity of macromolecular chains in the copolymers, and relative intensity I3 is attributed mainly to the electron‐attracting groups trapping the spur electrons and positrons. The experimental results have been discussed on the basis of the structural variation of macromolecular chains. In addition, the PALS measurement as a function of time for polystyrene and several styrene–methyl acrylate copolymers has also been performed. The result shows that an electric field is built in polymers during extended positron annihilation spectroscopy measurement, and the field effect is a main factor which causes the decrease in I3 with time. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2476–2485, 1999  相似文献   

19.
We report a new result on positron annihilation studies in acid- and cation-neutralized (Li+, Na+, K+, Rb+, Cs+, UO22+, Ni2+) Nafion membranes using positron lifetime and Doppler-broadened annihilation radiation (DBAR) measurements. The free-volume structure is characterized using a simple quantum mechanical model of positronium (Ps) in a spherical well. Our studies indicate that formation and expansion of clusters is always associated with a change in free-volume structure resulting in smaller free-volume holes. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 771–776, 1997  相似文献   

20.
To clarify the mechanisms of transport of ions and water molecules in perfluorosulfonated ionomer membranes for fuel cells, the temperature dependence of their transport behaviors was investigated in detail. Two types of Flemion membranes having different equivalent weight values (EW) were utilized along with Nafion 117 as the perfluorinated ionomer membranes, and H-, Li-, and Na-form samples were prepared for each membrane by immersion in 0.03 M HCl, LiCl, and NaCl aqueous solutions, respectively. The ionic conductivity, water self-diffusion coefficient (D(H)(2)(O)), and DSC were measured in the fully hydrated state as a function of temperature. The ionic conductivity of the membranes was reflected by the cation transport through the intermediary of water. Clearly, H(+) transports by the Grotthuss (hopping) mechanism, and Li(+) and Na(+) transport by the vehicle mechanism. The differences of the ion transport mechanisms were observed in the activation energies through the Arrhenius plots. The D(H)(2)(O) in the membranes exhibited a tendency similar to the ionic conductivity for the cation species and the EW value. However, no remarkable difference of D(H)(2)(O) between H- and the other cation-form membranes was observed as compared with the ionic conductivity. It indicates that water in each membrane diffuses almost in a similar way; however, H(+) transports by the Grotthuss mechanism so that conductivity of H(+) is much higher than that of the other cations. Moreover, the D(H)(2)(O) and DSC curves showed that a part of water in the membranes freezes around -20 degrees C, but the nonfreezing water remains and diffuses below that temperature. This fact suggests that completely free water (bulk water) does not exist in the membranes, and water weakly interacting with the cation species and the sulfonic acid groups in secondary and higher hydration shells freezes around -20 degrees C, while strongly binding water in primary hydration shells does not freeze. The ratio of freezing and nonfreezing water was estimated from the DSC curves. The D(H)(2)(O) in the membranes was found to be influenced by the ratio of freezing and nonfreezing water. DFT calculation of the interaction (solvation) energy between the cation species and water molecules suggested that the water content and the ratio of freezing and nonfreezing water depend strongly on the cation species penetrated into the membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号