首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we describe the “in situ” synthesis of “all‐acrylic” copolymer (n‐butyl acrylate‐co‐methyl methacrylate)/clay materials at different low contents of raw and modified Montmorillonite (1–4 wt % versus monomer). The cationic 2,2′ azobis‐(amidinopropane)dihydrochloride initiator was used to modified the clay by cation exchange in combination with the Ntert‐butyl‐N‐[1‐diethylphosphono‐(2,2‐dimethylpropyl)] (SG1) nitroxide to synthesize the polymer/clay nanocomposite via nitroxide mediated controlled radical polymerization. All synthesized materials are characterized by proton nuclear magnetic resonance, size exclusion chromatography, thermogravimetric analysis and differential scanning calorimetry techniques. The thermo‐mechanical properties of the synthesized materials are also reported. The results show that a decrease in molar masses and/or slight changes in molar compositions of poly (n‐butyl acrylate‐ co‐methyl methacrylate)/clay systems can be balanced by clay loading in polymer matrix, and consequently compensated or masked clay effects on physical properties of obtained materials. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

2.
Hybrid nanoarchitecture of tailor‐made Poly(ethyl acrylate)/clay was prepared by surface‐initiated atom transfer radical polymerization (SI‐ATRP), by tethering ATRP initiator on active hydroxyl group, present in surface as well as in the organic modifier of the clay used. Extensive exfoliation was facilitated by using these initiator modified clay platelets. Poly(ethyl acrylate) chains with controlled polymerization and narrow polydispersities were forced to be grown from within the clay gallery (intergallery) as well as from the outer surface (extragallery) of the clay platelets. The polymer chains attached onto clay surfaces might have the potential to provide the composites with enhanced compatibility in blends with common polymers. Attachment of the initiator on clay platelets was confirmed by Fourier transform infrared spectroscopy (FTIR), X‐ray photoelectron spectroscopy (XPS), elemental analysis, Wide‐angle X‐ray diffraction (WAXD), and microscopic analysis. Finally, end group analysis (by Matrix‐Assisted Laser Desorption Ionization Mass Spectrometry, and chain extension experiment) of the cleaved polymer and morphological study (by WAXD, Transmission Electron Microscopy), performed on the polymer grafted clays examined the effect of grafting on the efficiency of polymerization and the degree of dispersion of clay tactoids in polymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5014–5027, 2008  相似文献   

3.
A new technology for the production of transparent material, using a “crystalline” polymer, is proposed in this study. In addition, a heat‐resistant transparent flexible plastic film with a high hydrophobic surface and a thermal decomposition temperature near 400 °C was created. Partially fluorinated crystalline polymer with switchboard‐type lamellae results high transparency as a consequence of the formation of a high‐density amorphous structure based on high‐temperature drawing just below the melting point at 250 °C. Melt‐compounding with montmorillonite modified by the long‐chain quaternary phosphonium with high coverage induces formation of a nanohybrid that retains transparency and also results in an increase in the thermal degradation temperature by over 50 °C. Through this technology, which results in heat‐resistance, transparency, and flexibility, the nano‐micro‐millimeter structures of solid‐state polymers are hierarchically controlled, which enables the creation of new materials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1674–1690  相似文献   

4.
Semi‐crystalline polymer‐clay nanocomposite properties are often considered only by their clay dispersion state. The purpose of this work is to highlight texture effects on semi crystalline polymer‐clay properties. Maleic anhydride‐grafted polyethylene nanocomposites with two different processing techniques (Blown Extrusion and Compression) were studied. The processing was shown to induce different crystalline lamellae orientation in the films but with no significant changes in the crystalline lamellae long period, degree of crystallinity, clay particle orientation morphology and dispersion. The impact of these specific textures on the nanocomposites barrier and tensile properties were reported. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1966–1975, 2008  相似文献   

5.
The lamellar morphology in banded spherulites of poly(ε‐caprolactone) blended with an amorphous polymer, poly(vinyl butyral), was investigated by three‐dimensional transmission electron tomography. It showed a local lamellar twist on a smaller scale than the band spacing by 2 orders of magnitude. It also indicated wavy lamellae and frequent variation in the direction of the lamellar plane. All these results indicated an S‐profiled lamellar structure; that is, the cross section perpendicular to the lamellar growth direction was S‐shaped. S‐profiled lamellae show these structures when they are sliced at a certain angle to the lamellar surface direction. Lamellar branching was also observed, but no screw dislocations that led to the formation of extinction rings were observed in this work. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1122–1125, 2007  相似文献   

6.
Real‐time small‐angle X‐ray scattering (SAXS) measurement using synchrotron radiation was applied to study the lamellar structural changes in miscible crystalline polymer blends of poly(1,4‐butylene succinate) (PBSU) and poly(vinylidene fluoride) (PVDF) during melting and crystallization processes. The lamella of PBSU is either included in the interlamellar region of PVDF (interlamellar inclusion structure), or rejected from the interlamellar region of PVDF (interlamellar exclusion structure). The two lamellar structures coexists in the melt‐quenched samples of the PBSU/PVDF = 30/70 blend. Only the interlamellar exclusion structure exists in the drawn films of the PBSU/PVDF = 30/70 blend. The real‐time SAXS results show that the interlamellar exclusion structure in these samples is irreversibly transformed into the interlamellar inclusion structure by heating the sample above the melting temperature of PBSU and that the PBSU chains are crystallized between the lamellae of PVDF during the cooling process. The factors controlling the lamellar structural changes are possibly a balance of the miscibility and the chain exclusion by tie‐molecules and/or the chain diffusion under confinement by the lamellae of PVDF with higher melting temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1959–1969, 2007  相似文献   

7.
ε‐caprolactone was polymerized in the presence of neat montmorillonite or organomontmorillonites to obtain a variety of poly(ε‐caprolactone) (PCL)‐based systems loaded with 10 wt % of the silicates. The materials were thoroughly investigated by different X‐ray scattering techniques to determine factors affecting structure of the systems. For one of the nanocomposites it was found that varying the temperature in the range corresponding to crystallization of PCL causes reversible changes in the interlayer distance of the organoclay. Extensive experimental and literature studies on this phenomenon provided clues indicating that this effect might be a result of two‐dimensional ordering of PCL chains inside the galleries of the silicate. Small angle X‐ray scattering and wide angle X‐ray scattering investigation of filaments oriented above melting point of PCL revealed that polymer lamellae were oriented perpendicularly to particles of unmodified silicate, while in PCL/organoclay systems they were found parallel to clay tactoids. Calorimetric and microscopic studies shown that clay particles are effective nucleating agents. In the nanocomposites, PCL crystallized 20‐fold faster than in the neat polymer. The crystallization rate in nanocomposites was also significantly higher than in microcomposite. Further research provided an insight how the presence of the filler affects crystalline fraction and spherulitic structure of the polymer matrix in the investigated systems. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2350–2367, 2007  相似文献   

8.
This study investigates the morphology of a high‐density polyethylene processed with microinjection molding. Previous work pointed out that a “core‐free” morphology exists for a micropart (150‐μm thick), contrasting with the well‐known “skin‐core” morphology of a conventional part (1.5‐mm thick). Local analyses are now conducted in every structural layer of these samples. Transmission electron microscopy observations reveal highly oriented crystalline lamellae perpendicular to the flow direction in the micropart. Image analysis also shows that lamellae are thinner. Wide‐angle X‐ray diffraction measurements using a microfocused beam highlight that highly oriented shish–kebab morphologies are found through the micropart thickness, with corresponding orientation function close to 0.8. For the macropart, quiescent crystallized morphologies are found with few oriented structures. Finally, the morphology within the micropart is more homogeneous, but the crystalline structures created are disturbed due to the combined effects of flow‐induced crystallization and thermal crystallization during processing. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1470–1478, 2011  相似文献   

9.
In current study, a real‐time rheological method was used to investigate the intercalation and exfoliation process of clay in high‐density polyethylene/organoclay (HDPE/OMMT) nanocomposites using maleic anhydride grafted polyethylene (PEgMA) as compatibilizer. To do this, a steady shear was applied to the original nonintercalated or slightly intercalated composites prepared via simple mixing. The moduli of the composites were recorded as a function of time. The effect of matrix molecular weight and the content of compatibilizer on the modulus were studied. The role of the compatibilizer is to enhance the interaction between OMMT and polymer matrix, which facilitates the dispersion, intercalation, and exfoliation of OMMT. The matrix molecular weight determines the melt viscosity and affects the shear stress applied to OMMT platelets. Based on the experimental results, different exfoliation processes of OMMT in composites with different matrix molecular weight were demonstrated. The slippage of OMMT layers is suggested in low‐molecular weight matrix, whereas a gradual intercalation process under shear is suggested in high‐molecular weight matrix. Current study demonstrates that real‐time rheological measurement is an effective way to investigate the dispersion, intercalation, and exfoliation of OMMT as well as the structural change of the matrix. Moreover, it also provides a deep understanding for the role of polymer matrix and compatibilizer in the clay intercalation process. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 302–312, 2010  相似文献   

10.
The miscibility and structure in polypropylene/layered silicate nanocomposites is systematically investigated utilizing a maleic-anhydride grafted polypropylene with a low degree of functionalization acting as the compatibilizer. The morphology of the hybrids can be modified from phase separated to almost completely exfoliated in a controlled way by varying the ratio α of the compatibilizer to the organophilized clay; this ratio α is found to be the most important parameter in determining the final structure whereas exfoliated structures can be obtained for α values of 9 or higher. Furthermore, utilization of a “masterbatch” procedure can enhance the degree of exfoliation even for smaller values of α; in that case, polypropylene is essentially mixed with the already dispersed “hairy” platelets. Investigation of the thermal stability of the micro- and nanocomposites shows that high degree of exfoliation is vital in increasing the temperature that the polymer starts to degrade. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2683–2695, 2008  相似文献   

11.
A survey is presented on the crystallization kinetics and the morphology of miscible crystalline/crystalline polymer blends. There are only few corresponding systems. In them, however, a number of strange kinetic and structural phenomena can be observed: (i) spherulitic crystallization of the components side‐by‐side, (ii) “interpenetrating crystallization,” (iii) “interlocking spherulitic crystallization,” and (iv) “interfilling crystallization.” Cocrystallization is forbidden for crystallographic reasons. The blend partners grow instead in their own lamellar stacks, and mixed lamellar stacks are a seldom and questionable exception. They crystallize also usually stepwise and not simultaneously. Upon step crystallization, the crystallization of the second component is determined by its redistribution with crystallization of the former. Those composition inhomogeneities are an independent issue that arises also with the development of the morphology in crystalline/amorphous blends, and a corresponding survey is yielded, too. The blend poly (vinylidene fluoride)/poly‐β‐hydroxybutyrate is a convenient model system as it can show all of these morphological and kinetic features after suitable thermal treatment. Some of them are demonstrated in the present publication. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1917–1931, 2007  相似文献   

12.
Mechanical, thermal, and electrical properties of graphite/PMMA composites have been evaluated as functions of particle size and dispersion of the graphitic nanofiller components via the use of three different graphitic nanofillers: “as received graphite” (ARG), “expanded graphite,” (EG) and “graphite nanoplatelets” (GNPs) EG, a graphitic materials with much lower density than ARG, was prepared from ARG flakes via an acid intercalation and thermal expansion. Subsequent sonication of EG in a liquid yielded GNPs as thin stacks of graphitic platelets with thicknesses of ~10 nm. Solution‐based processing was used to prepare PMMA composites with these three fillers. Dynamic mechanical analysis, thermal analysis, and electrical impedance measurements were carried out on the resulting composites, demonstrating that reduced particle size, high surface area, and increased surface roughness can significantly alter the graphite/polymer interface and enhance the mechanical, thermal, and electrical properties of the polymer matrix. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2097–2112, 2007  相似文献   

13.
Changes in the lamellar and crystalline structures were followed as a function of applied stress to understand the influence of the interactions between the crystalline and amorphous domains on the fiber properties. We observed a reversible transformation from a structure giving a four‐point small‐angle pattern to a structure giving a two‐point pattern; these structures corresponded to the lamellae with oblique and normal lamellar surfaces, respectively. The characteristics of these two structures such as the stack diameter, stack height, and tilt angle were different and were determined by the processing conditions and did not change when the fiber was elastically deformed. The structure giving a two‐point pattern was probably the load‐carrying lamellar entity in these fibers. The diameter of the lamellar stacks, tilt angle of the lamellae, and the strain in the lamellar spacing appeared to have the most influence on properties such as tenacity and dimensional stability. The long‐spacing strain, which is about the same as the fiber strain, determined the modulus at low elongation as well as ultimate elongation. These indicate that the lamellar stacks have at least as much influence as the interfibrillar chains on fiber properties. Structural features that determine the performance in semicrystalline polymers were investigated by analyzing four generations of polyethylene terephthalate fibers. Some of the fiber properties correlate with changes in the crystalline domains such as the crystalline orientation, size, and unit cell dimensions. Fibers in which the crystalline strain was large because of their strong linkages to the amorphous chains, and better load transfer, had the highest modulus and lowest ultimate elongation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1538–1553, 2003  相似文献   

14.
High‐density polyethylene/clay nanocomposites were elongated until breakage to investigate the effect of the mechanical stretching on the crystal‐to‐crystal transformations and their morphology. Crystalline transformations of the polymer matrix were studied via Fourier transform infrared spectroscopy, differential scanning calorimetry, and X‐ray diffraction measurements. It was concluded that the stress‐induced crystal‐to‐crystal transformations from orthorhombic structures to monoclinic and pseudohexagonal structures as well as the back‐transformation during relaxation were hindered by the presence of the clay. X‐ray diffraction studies on stretched samples showed that the mechanical stretching led from an intercalated structure to an almost exfoliated structure. These findings agreed with scanning electron micrographs, in which the beneficial effect of stretching on the exfoliation of the clay was evident. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 914–924, 2006  相似文献   

15.
A new type of positive α‐iPP spherulites has been developed by self‐seeding process. The growth process of these positive α‐iPP spherulites is just like “photographic development process,” which is very different from the conventional growth process of polymer spherulites. Scanning electron microscopy (SEM) was used to explore the morphologies of these positive α‐iPP spherulites on a lamellar level. The results show that these spherulites are composed of a large number of lamellae having interwoven structures, which result in different optical character, special melting behavior, and different contrast under SEM as compared with the conventional melt‐crystallized spherulites. The development of these interwoven lamellar structures has been considered because in the sites of the original spherulites, a large number of self‐nuclei are formed because of the incomplete melting of the original spherulites and these induce nearly equal number of radial and tangential lamellae at rather high temperatures. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1114–1121, 2006  相似文献   

16.
Exfoliation of a stack of sheets (a model for clay platelets) in a dynamic matrix of polymer chains is investigated by a computer simulation model. How the interplay between the thermodynamics (interaction-driven) and conformational (structural constraints) entropy affects the exfoliation of sheets is the subject of this study. A stack of four sheets with a small initial interlayer distance constitutes the layer on a discrete lattice. The layered platelets are immersed in a matrix represented by the mobile polymer chains which occupy a fraction (concentration) of the lattice sites. Both sheets and chains are modeled by the bond-fluctuation mechanism and execute their stochastic motion via Metropolis algorithm. An attractive and a repulsive interaction between the polymer matrix and platelets are considered. Exfoliation of the sheets is examined by varying the molecular weight of the polymer chains forming a dynamic network matrix with various degrees of entanglements. At low-molecular weight of the polymer, exfoliation is achieved with repulsive interaction and the exfoliation is suppressed with attractive matrix as sheets stick together via polymer mediated interaction introduced by intercalated polymer chains. Increasing the molecular weight of the polymer matrix suppresses the exfoliation of sheets primarily due to enhanced entanglement—at high-molecular weight (with the radius of gyration of polymer chains larger than the characteristic linear dimension of the platelets), the stacked (layered) morphology is arrested via entropic trapping and exfoliation ceases to occur. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2696–2710, 2008  相似文献   

17.
The lamellar structures in uniaxially drawn films of miscible crystalline/crystalline polymer blends of poly(vinylidene fluoride) (PVDF) and poly(3‐hydroxybutyrate) (PHB) were investigated by static and time‐resolved measurements of small‐angle X‐ray scattering (SAXS). Intense SAXS in the low angle range of the meridian was interpreted as originating from the interlamellar inclusion structure, in which the PHB chains were included between the lamellae of PVDF. The interlamellar inclusion was induced for the uniaxially drawn films of PVDF/PHB = 30/70 blend with a draw ratio (DR) of 2.8–4.5, whereas the lamellae of the PVDF and PHB components were mutually excluded from each other forming their own lamellar stacks (interlamellar exclusion) in the blend with a higher DR (5.0–5.7). When the highly drawn film with the interlamellar exclusion structure was heat treated at 154–165 °C, the interlamellar inclusion structure was partially induced by the heat treatment. The time‐resolved SAXS measurements indicated that the interlamellar inclusion structure was developed by melting and recrystallization of PVDF during the heat treatment. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 381–392, 2009  相似文献   

18.
The thermal behavior and overall isothermal crystallization kinetics of a series of organophilic modified montmorillonite–poly(?‐caprolactone) nanocomposites were investigated. In general, the thermal behavior was influenced more by the type of dispersion than by the clay content. For nanocomposites in which silicate platelets were predominantly dispersed in the polymer matrix to give exfoliated structures, the thermal properties were improved with respect to those of neat poly(?‐caprolactone), whereas in those cases in which simply intercalated structures were attained, the thermal properties regularly decayed as the clay content increased. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1321–1332, 2004  相似文献   

19.
The relationships between the microstructure and the fracture behavior of three polymer/clay nanocomposites were studied. Two different polymer matrices were chosen, namely polyamide‐6 and polyethylene (compatibilized with PE‐g‐MA or PE‐g‐PEo), to reach very different clay dispersion states. The microstructure was characterized in terms of polymer crystallinity, orientation of the polymer crystalline lamellae, clay dispersion state, and orientation of the clay tactoids. The mechanical behavior was characterized by tensile tests. The essential work of fracture (EWF) concept was used to determine the fracture behavior of the nanocomposites. Both tensile and EWF tests were performed in two perpendicular directions, namely longitudinal and transversal. It is shown that the fracture behaviors of the matrices mainly depend on the polymer crystalline lamellae orientation. For the nanocomposites, the relationships between the matrix orientation, the clay dispersion states, the values of the EWF parameters (we and βwp), and their anisotropy are discussed. The results show that the lower the average clay tactoid thickness, the lower is the decrease of fracture performance for the nanocomposite and the more consumed energy as longer the path of the crack. Besides, a linear dependence of the anisotropy of the EWF parameters of the nanocomposites on the average clay aspect ratio is found. The more exfoliated the structure is, the less pronounced the anisotropy of the EWF parameters. Interestingly, it is thought that the average clay aspect ratio is the parameter representing the clay dispersion state that governs the fracture anisotropy of the nanocomposites (as the elastic properties determined by tensile tests). © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1820–1836, 2008  相似文献   

20.
Stable water‐in‐oil high internal phase emulsions, containing styrene and divinylbenzene monomers and exfoliated montmorillonite, were prepared and polymerized to obtain nanocomposite microcellular materials. The porous structure was investigated by scanning electron microscopy, mercury intrusion porosimetry, and nitrogen adsorption/desorption analyses. The exfoliation of clay was investigated by X‐ray diffraction and transmission electron microscopy analyses. The presence of inorganic filler did not modify the microcellular structure of the composite, while the use of modified clay significantly enhanced its mechanical properties. No influence on the thermal degradation was noted, except for materials with high clay content that tended to deteriorate at lower temperature than the other materials. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4193–4203, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号