首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly [styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS)/sepiolite clay nanocomposites are prepared by solvent casting method. Two types of schemes have been adopted to establish the compatibility between nonpolar polymer (SEBS) and needle‐like inorganic filler (sepiolite), either by polar modification of the nonpolar polymer or organic modification of the inorganic filler. Structure–property correlation of nanocomposites derived from two different approaches is compared. Structural and morphological analysis of nanocomposites has been investigated by Fourier transform infrared spectroscopy, X‐ray diffraction, field emission scanning electron microscopy and transmission electron microscopy. Fourier transform infrared result shows better compatibility between SEBS and modified sepiolite clay compared to maleic anhydride grafted SEBS and pristine sepiolite in their nanocomposites. Tensile strength and % elongation are found to increase by 32 and 105%, respectively, with the addition of just 3 parts per hundred parts of resin (phr) modified sepiolite clay to pristine SEBS matrix. Moreover, thermal stability has also improved by 96°C with similar loading. This work provides a new insight into the structure and thermo‐mechanical properties of novel SEBS–sepiolite clay nanocomposites. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Morphologies of poly(ε‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(ε‐caprolactone) (PCL‐PEG‐PCL) triblock copolymer self‐assemblies in the diluted solution and in gel were studied by atomic force microscopy (AFM). The copolymer self‐assembled into wormlike aggregates, of uniform diameter, in water. The wormlike aggregates arranged in order to form separate clusters in the diluted copolymer solution; at a higher copolymer concentration, the clusters became bigger and bigger, and packed together to form gel. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
The effect of the triblock copolymer poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS) on the formation of the space charge of immiscible low‐density polyethylene (LDPE)/polystyrene (PS) blends was investigated. Blends of 70/30 (wt %) LDPE/PS were prepared through melt blending in an internal mixer at a blend temperature of 220 °C. The amount of charge that accumulated in the 70% LDPE/30% PS blends decreased when the SEBS content increased up to 10 wt %. For compatibilized and uncompatibilized blends, no significant change in the degree of crystallinity of LDPE in the blends was observed, and so the effect of crystallization on the space charge distribution could be excluded. Morphological observations showed that the addition of SEBS resulted in a domain size reduction of the dispersed PS phase and better interfacial adhesion between the LDPE and PS phases. The location of SEBS at a domain interface enabled charges to migrate from one phase to the other via the domain interface and, therefore, resulted in a significant decrease in the amount of space charge for the LDPE/PS blends with SEBS. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2813–2820, 2004  相似文献   

4.
The surface structure of very thin (15–20 nm) spin-coated films of a symmetrical poly(styrene-b-methyl-methacrylate) block copolymer on silicon and mica is analyzed by atomic force microscopy (AFM). The films show a surface corrugation of a very regular 100 nm lateral periodicity and 6–8 nm amplitude. Film thickness is measured by AFM at induced film defects and checked by ellipsometry. XPS shows that both blocks are at the film surface. Selective degradation of the methyl methacrylate block is used for contrast enhancement and allows to assign poly(styrene) to the elevated surface regions and poly(methyl methacrylate) to the substrate/film interface.Friction interactions of the AFM tip with the film surface may be used to induce high orientational ordering of the morphological pattern perpendicular to the fast scan direction.  相似文献   

5.
Hybrid composites consisting of isotactic poly(propylene) (PP), sisal fiber (SF), and maleic anhydride grafted styrene‐(ethylene‐co‐butylene)‐styrene copolymer (MA‐SEBS) were prepared by melt compounding, followed by injection molding. The melt‐compounding torque behavior, thermal properties, morphology, crystal structure, and mechanical behavior of the PP/MA‐SEBS/SF composites were systematically investigated. The torque test, thermogravimetric analysis, differential scanning calorimetric, and scanning electron microscopic results all indicated that MA‐SEBS was an effective compatibilizer for the PP/SF composites, and there was a synergism between MA‐SEBS and PP/SF in the thermal stability of the PP/MA‐SEBS/SF composites. Wide‐angle X‐ray diffraction analysis indicated that the α form and β form of the PP crystals coexisted in the PP/MA‐SEBS/SF composites. With the incorporation of MA‐SEBS, the relative amount of β‐form PP crystals decreased significantly. Mechanical tests showed that the tensile strength and impact toughness of the PP/SF composites were generally improved by the incorporation of MA‐SEBS. The instrumented drop‐weight dart‐impact test was also used to examine the impact‐fracture behavior of these composites. The results revealed that the maximum impact force (Fmax), impact‐fracture energy (ET), total impact duration (tr), crack‐initiation time (tinit), and crack‐propagation time (tprop) of the composites all tended to increase with an increasing MA‐SEBS content. From these results, the incorporation of MA‐SEBS into PP/SF composites can retard both the crack initiation and propagation phases of the impact‐fracture process. These prolonged the crack initiation and propagation time and increased the energy consumption during impact fracture, thereby leading to toughening of PP/MA‐SEBS/SF composites. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1214–1222, 2002  相似文献   

6.
Synthesis of poly(styrene‐block‐tetrahydrofuran) (PSt‐b‐PTHF) block copolymer on the surfaces of intercalated and exfoliated silicate (clay) layers by mechanistic transformation was described. First, the polystyrene/montmorillonite (PSt/MMT) nanocomposite was synthesized by in situ atom transfer radical polymerization (ATRP) from initiator moieties immobilized within the silicate galleries of the clay particles. Transmission electron microscopy (TEM) analysis showed the existence of both intercalated and exfoliated structures in the nanocomposite. Then, the PSt‐b‐PTHF/MMT nanocomposite was prepared by mechanistic transformation from ATRP to cationic ring opening polymerization (CROP). The TGA thermogram of the PSt‐b‐PTHF/MMT nanocomposite has two decomposition stages corresponding to PTHF and PSt segments. All nanocomposites exhibit enhanced thermal stabilities compared with the virgin polymer segments. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2190–2197, 2009  相似文献   

7.
Among the various methods available for recycling plastics waste, blending technology is a straightforward and relatively simple method for recycling. In this paper, a new blending technology, low‐temperature solid‐state extrusion, was discussed. Several recycled poly(terephthalate ethylene)/bisphenol a polycarbonate/poly(styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene) blends (R‐PET/PC/SEBS blends) have been prepared by this technology. The results show that thermal and hydrolytic degradation of R‐PET is improved when extruding temperature was between the glass transition temperature (Tg) and cold crystallization temperature (Tcc). Elongation at break and notched impact strength were increased evidently, from 15.9% to 103.6, and from 8.6 kJ/m2 to 20.4 kJ/m2, respectively. The appropriate rotating speed of screws was between 100 and 150 rpm. At the same time, the appropriate rotating speed of the screws brings a suitable shear viscosity ratio of R‐PET and PC, which is of advantage to blending of R‐PET and PC together with SEBS. Dispersion of minor phase, PC and SEBS, became finer and smaller, to about 1 µm. Chain extender, Methylenediphenyl diisocyanate (MDI) can react with the end‐carboxyl group and end‐hydroxyl group of R‐PET. FT‐IR spectra testified that the reactions have been happened in the extruding process. A chain extending reaction not only increased the molecular weight of PET and PC, but also can synthesize PET‐g‐PC copolymer to act as a reactive compatilizer. An SEM micrograph shows that a micro‐fiber structure of PET was formed in the blend sample. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Nontoxic and biodegradable poly(?‐caprolactone)‐b‐poly(ethylene glycol)‐b‐poly(?‐caprolactone) triblock copolymers were synthesized by the solution polymerization of ?‐caprolactone in the presence of poly(ethylene glycol). The chemical structure of the resulting triblock copolymer was characterized with 1H NMR and gel permeation chromatography. In aqueous solutions of the triblock copolymers, the micellization and sol–gel‐transition behaviors were investigated. The experimental results showed that the unimer‐to‐micelle transition did occur. In a sol–gel‐transition phase diagram obtained by the vial‐tilting method, the boundary curve shifted to the left, and the gel regions expanded with the increasing molecular weight of the poly(?‐caprolactone) block. In addition, the hydrodynamic diameters of the micelles were almost independent of the investigated temperature (25–55 °C). The atomic force microscopy results showed that spherical micelles formed at the copolymer concentration of 2.5 × 10?4 g/mL, whereas necklace‐like and worm‐like shapes were adopted when the concentration was 0.25 g/mL, which was high enough to form a gel. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 605–613, 2007  相似文献   

9.
To be used as templates for nanostructured thermosets, a commercial poly(styrene‐b‐isoprene‐b‐styrene) (SIS) block copolymer (BCP) was epoxidized by three different epoxidation procedures. An exhaustive analysis of methodologies using metal catalyzed/hydrogen peroxide, dimethyldioxirane (DMDO), and meta‐chloroperbenzoic acid (m‐CPBA) was performed to obtain reactive BCPs. The DMDO approach was the best strategy to obtain highly epoxidized SIS BCP (85 mol %) without formation of side products. Careful control in BCP epoxidation by metal catalyzed/hydrogen peroxide and m‐CPBA approaches led to a maximum epoxidation degree (ED) of approximately 60 mol % without the formation of side products. The ED by metal catalyzed/hydrogen peroxide strategy could be further increased to 69 mol %, but a significant amount of crosslinking, ring opening, and polymer chain scission reactions were detected by spectroscopic and chromatographic techniques. The miscibility of epoxidized BCPs with diglycidyl ether of bisphenol‐A epoxy system before and after curing was analyzed to develop nanostructured epoxy thermosets. For ED higher than 69 mol %, BCPs were miscible, while those with lower ED presented macrophase separation. Highly epoxidized BCPs obtained by the DMDO methodology were successfully used to obtain ordered nanodomains inside the epoxy matrix, as determined by atomic force microscopy. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
Diblock copolymers of poly(ethylene‐co‐butylene) and polystyrene or poly(4‐acetoxystyrene) are synthesized by atom transfer radical polymerization (ATRP) using a 2‐bromopropionic ester macroinitiator prepared from commercial monohydroxyl functional narrow dispersity hydrogenated polybutadiene (Kraton Liquid Polymer, L‐1203). ATRP carried out in bulk and in xylene solution with cuprous bromide and two different complexing agents 2,2′‐bipyridine (bipy) and 1,1,4,7,10,10‐hexamethyltriethylenetetraamine (HMTETA) yielded well‐defined diblock copolymers with polydispersities around 1,3. The diblock copolymer with poly(4‐acetoxystyrene) was hydrolyzed to the corresponding poly(4‐hydroxystyrene) sequence.  相似文献   

11.
Concentration dependent morphology of 3‐armed poly(ethylene glycol)‐b‐poly(ε‐caprolactone) copolymer aggregates in aqueous system was investigated by atomic force microscopy (AFM). The AFM results show that, at a low concentration, 4 × 10?5 g/mL, spherical micelles occur, and unmicellized molecules are not distributed homogeneously in the copolymer aqueous solution. Unequal outspread clusters composed of wormlike aggregates are formed at a moderate copolymer concentration, 4 × 10?4 g/mL, those wormlike aggregates are orderly packed in the clusters. At a high concentration of 0.05 g/mL, the copolymer aqueous system is indeed a gel at room temperature, outspread clusters of wormlike aggregates join together to forma network structure. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1412–1418, 2008  相似文献   

12.
The stereocomplex formation between enantioselective poly(lactide) (PLA) homopolymers is well understood. In this report an attempt is made to analyze the influence on the self‐assembling of the stereocomplex of enantiomorphic PLA‐PEG di‐ and tri‐blocks in different solvents. Powder diffraction studies showed the poly(ethylene glycol) (PEG) and the PLA blocks crystallize separately forming unique supra structures like rods, discs and coiled coils with dimensions in the micrometer scale in length and sub‐micrometer scale in diameter. The influence of the solvents on the crystal formation was shown in the formation of uniform structures. Discs emerged from equimolar mixtures of the D ‐ and L ‐configured di‐ and tri‐block copolymers, in dioxan and acetonitrile and in water the stereocomplexes crystallized mainly as rods. In some cases the rods were observed as coiled coils. The shape, the hydrophobic/hydrophilic content and the PEG coated surface of the discs give them a future potential as matrix for the controlled and targeted delivery of bioactive agents. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
The phase behavior of thin‐film blends of polystyrene (PS) and the random copolymer poly(styrene‐co‐4‐bromostyrene) (PBS) was studied with atomic force microscopy (AFM) and small‐angle X‐ray scattering (SAXS). Phase behavior was studied as a function of the PBS and PS degree of polymerization (N), degree of miscibility [controlled via the volume fraction of bromine in the copolymer (f)], and annealing conditions. The Flory–Huggins interaction parameter χ was measured directly from SAXS as a function of temperature and scaled with f as χ = f2χS–BrS [where χS–BrS represents the segmental interaction between PS and the homopolymer poly(4‐bromostyrene)] Simulations based on the Flory–Huggins theory and χ measured from SAXS were used to predict phase diagrams for all the systems studied. The PBS/PS system exhibited upper critical solution temperature behavior. The AFM studies showed that increasing f in PBS led to progressively different morphologies, from flat topography (i.e., one phase) to interconnected structures or islands. In the two‐phase region, the morphology was a strong function of N (due to changes in mobility). A comparison of the estimated PBS volume fractions from the AFM images with the PBS bulk volume fraction in the blend suggested the encapsulation of PBS in PS, supporting the work of previous researchers. Excellent agreement between the phase diagram predictions (based on χ measured by SAXS) and the AFM images was observed. These studies were also consistent with interdiffusion measurements of PBS/PS interfaces (with Rutherford backscattering spectroscopy), which indicated that the interdiffusion coefficient decreased with increasing χ in the one‐phase region and dropped to zero deep inside the two‐phase region. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 255–271, 2002  相似文献   

14.
The surface compositions and morphologies of melt‐quenched blends of isotactic polypropylene (iPP) with aspecific poly(ethylene‐co‐propylene) rubber (aEPR) were characterized by atomic force microscopy, optical microscopy, and X‐ray photoelectron spectroscopy. The surface morphologies and compositions formed in the melt are frozen‐in by crystallization of the iPP component and, depending on the processing conditions, are enriched in iPP or aEPR or contain a phase‐separated mix of iPP and aEPR. Enrichment of iPP is observed for blends melted in open air, in agreement with earlier work showing the high surface activity of atactic polypropylene at open interfaces. Surface segregation of iPP is suppressed at confined interfaces. Blends melt‐pressed between hydrophilic and hydrophobic substrates have phase‐separated iPP and aEPR domains present at the surface, which grow in size as the melt time increases. Surface enrichment of aEPR is observed after exposing melt‐pressed blends to n‐hexane vapor, which preferentially solvates aEPR and draws it to the surface. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 421–432, 2004  相似文献   

15.
A Fourier transform infrared/attenuated total reflectance technique was used to study the diffusion of water through poly(styrene‐b‐isobutylene‐b‐styrene) block copolymers (BCPs), as well as sulfonated (H+) and Na+‐sulfonated ionomer versions. Diffusion data were collected and interpreted for these membranes versus polystyrene block composition, degree of sulfonation, Na+ ion content in the ionomers, and the effect of initially dry versus prehydrated conditions. An “early time” diffusion coefficient, D, decreased with increasing percent polystyrene for a series of unmodified BCPs. D decreased with increasing degree of sulfonation, and with increasing ion content for the Na+‐exchanged samples and this was interpreted in terms of diffusion limitations caused by a strong tendency for ion hydration. The method also yielded information relating to the time evolution of water structure from the standpoint of degree of intermolecular hydrogen bonding. Membrane prehydration causes profound increases in D for both the unmodified BCP and sulfonated samples, as in plasticization. The simultaneous acquisition of information relating to interactions between water molecules and interactions of water molecules with functional groups on the host polymer matrix offers more information than conventional diffusion measurement techniques that simply count transported molecules. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 764–776, 2005  相似文献   

16.
Thermally‐triggered shape memory polymers (SMPs) are smart materials, which are capable of changing their shapes when they are exposed a heat stimulant. Blending semi‐crystalline and elastomeric polymers is an easy and low‐cost way to obtain thermo‐responsive SMPs. In this work, novel poly(ethylene‐co‐1‐octene) (PEO) and poly(styrene‐b‐isoprene‐b‐styrene) (SIS) thermoplastic elastomer blends were prepared via melt blending method. The morphological, mechanical, rheological properties and shape memory behaviours of the blends were investigated in detail. In morphological analysis, co‐continuous morphology was found for 50 wt% PEO/50 wt% SIS and 60 wt% PEO/40 wt% SIS (60PEO/40SIS) blends. The shape memory analysis performing by dynamic mechanical analyzer showed that the 60PEO/40SIS blend also exhibited the optimum shape memory performance with 95.74% shape fixing and 98.98% shape recovery. Qualitatively shape memory analysis in hot‐water pointed out that the amount of semi‐crystalline PEO promotes shape fixing ability of the blends whereas SIS content enhances shape recovery capability. Although the SIS and PEO are immiscible polymers, the blends of them were exhibited good elastomeric properties with regard to tensile strength, toughness, and elongation at break.  相似文献   

17.
With the aim of creating highly branched amphiphilic block copolymers, the primary amine end groups of the poly(propylene imine) dendrimers DAB‐dendr‐(NH2)8 and DAB‐dendr‐(NH2)64 were converted to 2‐bromoisobutyramide groups. Poly (styrene‐btert‐butyl methacrylate) (PS‐b‐PtBMA) was synthesized by ATRP from the eight end group initiator, and poly(styrene‐btert‐butyl acrylate) (PS‐b‐PtBA) was synthesized from the 64 end group initiator. The tert‐butyl groups were removed to produce poly(styrene‐b‐methacrylic acid) (PS‐b‐PMAA) and poly(styrene‐b‐acrylic acid) (PS‐b‐PAA). Comparison of size exclusion chromatography (SEC) absolute molecular weight analyses of the polystyrenes with calculated molecular weights showed that the eight end group initiator produced a polystyrene with about eight branches, and that the 64 end group initiator produced polystyrene with many fewer than 64 branches. The PS‐b‐PtBA materials also have many fewer than 64 branches. The PS‐b‐PAA samples dissolved molecularly in DMF but formed aggregates in water even at pH 10. AFM images of the PS‐b‐PtBAs spin coated from THF and DMF onto mica showed aggregates. AFM images of the PS‐b‐PAAs spin coated from various mixtures of DMF and water at pH 10 showed flat disks and worm‐like images similar to those observed with linear PS‐b‐PAAs. Use of a PS‐b‐PAA and a PS‐b‐PMAA as templates for emulsion polymerization of styrene produced latexes 100–200 nm in diameter. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4623–4634, 2007  相似文献   

18.
Novel block–graft copolymers [poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene)‐g‐poly(tert‐butyl acrylate)] were synthesized by the atom transfer radical polymerization (ATRP) of tert‐butyl acrylate (tBA) with chloromethylated poly(styrene‐b‐ethylene‐co‐butylene‐b‐styrene) (SEBS) as a macromolecular initiator. The copolymers were composed of triblock SEBS as the backbone and tBA as grafts attached to the polystyrene end blocks. The macromolecular initiator (chloromethylated SEBS) was prepared by successive hydrogenation and chloromethylation of SEBS. The degree of chloromethylation, ranging from 1.6 to 36.5 mol % according to the styrene units in SEBS, was attained with adjustments in the amount of SnCl4 and the reaction time with a slight effect on the monodispersity of the starting material (SEBS). The ATRP mechanism of the copolymerization was supported by the kinetic data and the linear increase in the molecular weights of the products with conversion. The graft density was controlled with changes in the functionality of the chloromethylated SEBS. The average length of the graft chain, ranging from a few repeat units to about two hundred, was adjusted with changes in the reaction time and alterations in the initiator/catalyst/ligand molar ratio. Incomplete initiation was detected at a low conversion; moreover, for initiators with low functionality, sluggish initiation was overcome with suitable reaction conditions. The block–graft copolymers were hydrolyzed into amphiphilic ones containing poly(acrylic acid) grafts. The aggregation behavior of the amphiphilic copolymers was studied with dynamic light scattering and transmission electron microscopy, and the aggregates showed a variety of morphologies. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1253–1266, 2002  相似文献   

19.
The lamellar organization of melt‐crystallized β‐isotactic polypropylene was studied by atomic force microscopy (AFM) after permanganic etching. Hedritic objects grown at a high crystallization temperature (140–143 °C) were investigated. Essential features of the hedritic development were revealed by the characteristic projections exposed at the sample surface. A three‐dimensional view of the morphology was obtained by AFM. Hedritic growth proceeded mainly by branching around screw dislocations resulting in new lamellae that further developed. Successive lamellar layers often diverged. Deviation from the planar lamellar habit was observed, varying with the position within the hedrite. Twisting of the lamellae also was observed occasionally in the vicinity of the screw dislocations. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 672–681, 2000  相似文献   

20.
The triblock copolymer poly[6,8‐dioxabicyclo[3.2.1]octane‐b‐(ethylene glycol)‐b‐6,8‐dioxabicyclo[3.2.1]octane] was prepared by the controlled cationic ring‐opening polymerization of 6,8‐dioxabicyclo[3.2.1]octane (6,8‐DBO) from a macroinitiator. The macroinitiator, poly(ethylene glycol) (PEG) di(1‐chloroethyl ether), was prepared via the addition of HCl to PEG divinyl ether and was characterized with 13C NMR, 1H NMR, and gel permeation chromatography (GPC). Upon preparation, a small fraction of the chain ends underwent a cyclization reaction to form inactive chain ends. When the macroinitiator was used in polymerizations of 6,8‐DBO with ZnI2 as an activator, linear kinetic plots were observed, a linear increase in the copolymer molecular weight with conversion was seen, and the molecular weight distributions of the copolymer samples remained constant at about 1.40. Confirmation of the triblock structure of the final product was obtained with 1H NMR spectra, 13C DEPT spectra, and GPC chromatograms. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4081–4087, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号