首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A complex of Eu3+, acrylic acid (AA), and 1, 10‐phenanthroline (Phen) was synthesized. The structure and fluorescence of Eu(AA)3Phen was characterized with elemental analysis, FTIR, 1H NMR, and fluorescence spectroscopy. A novel copolymer containing rare earth complex, poly(PEGMA‐co‐NIPAm‐co‐Eu(AA)3Phen) (PPNEu), was prepared by free radical copolymerization in methanol with azodiisobutyronitrile as initiator. 1H NMR, fluorescence spectroscopy, UV‐vis spectroscopy, and TEM were used to characterize this copolymer. The interaction of PPNEu with deoxyribonucleic acid (DNA) was studied by fluorescence spectroscopy, UV‐vis spectroscopy and agarose gel electrophoresis. The results of fluorescence, UV‐vis absorption, and agarose electrophoresis indicated that the PPNEu could interact with DNA in an electrostatic bonding mode. The TEM observation showed that the PPNEu could form spherical micelles in water solution small than 100 nm; the efficient complexation of PPNEu with DNA occurred. These results suggested the potential of the PPNEu as gene detective reagent and gene delivery carrier. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

2.
Two series of conjugated polymers with a carbazole moiety were synthesized by Knovenagel and Wittig condensations. The chemical structure, thermogravimetric, photophysical and electrochemical properties of the polymers were characterized by 1H‐NMR, IR, GPC, TG, UV‐vis, FL, and CV. The results indicated that PBM is the most thermally stable one and PBP is the most thermally instable one. The absorption and emission properties of the polymers were adjusted by the modification of chemical structures. The quenching effect of cyano group and oxygen atom results in the lower fluorescence quantum efficiency. The fitted emission spectra suggested that the emission spectra of all the polymers come from different vibronic transitions and aggregation emission. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

3.
A series of binary and ternary rare earth (Gd, Eu, Tb) complexes with ortho hydroxyl benzoic acid, para aminobenzoic acid, nicotinic acid and 1,10-phenanthroline were synthesized. Phosphorescence spectra and lifetimes of Gd complexes were measured and the lowest triplet state energies of gadolinium binary complexes and the intramolecular energy transfer efficiencies were determined. The luminescence properties and energy transfer process of Eu3+and Tb3+ complexes were discussed.  相似文献   

4.
Two water‐soluble cationic conjugated polyelectrolytes ( P1 and P2 ) containing diacetylene, diketopyrrolopyrrole (DPP), and fluorene units were synthesized with Glaser‐Hay coupling reaction as the key step. The narrow bandgap DPP units and the wide bandgap fluorene units in the cationic polyelectrolytes might form an energy donor‐acceptor molecule architectures, in which DPP units serve as an acceptor of the fluorescent resonance energy transfer. The addition of calf thymus DNA enhances the fluorescent resonance energy transfer from fluoreneethynylene segments to DPP units, which results in a sensitive color change from blue to red in the PL spectra and allows naked‐eye detection of DNA with low concentration. In addition, the detection of DNA with P1 and P2 is high selective because it is not interfered by common ions. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

5.
The copolymers that are composed of poly(fluorene) (PF), poly(p‐phenylene), and Poly(p‐phenylenevinylene) as backbone and a large 4′‐(N,N′‐diphenylamino)diphenyl or 4′‐(N,N′‐diphenylamino)phenyl as pendent group were synthesized by the nickel(0)‐mediated polycoupling. The composition of the obtained copolymers was confirmed by H NMR. All the copolymers possessed a high weight‐average molecular weight and good solubility in common organic solvents. As the content of triphenyl amine pendants increases, the copolymers showed increased thermal stability due to increased glass transition temperature and increased hole injection ability because of decreased onset of the oxidation potential. In the photoluminescence spectra of copolymers, poly (BDAV30co‐DHF70) and poly(BDAPV30co‐DHF70) showed efficient energy transfer. indium tin oxide/poly(styrene sulfonate)‐doped poly(3,4‐ethylene dioxythiophene)/poly (BDAV30co‐DHF70)/LiF/Al device showed maximum brightness of 2267 cd/m2 and efficiency of 0.80 cd/A, with turn‐on voltage at 9.1 V. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 172–182, 2006  相似文献   

6.
Ten new rare earth complexes with Schiff base (HL) derived from phthalaldehyde with two-CHO groups and lysine, which has unsymmetrical α-and ε--NH2 groups, were synthesized and characterized by elemental analysis, TG-DTA analysis, UV-Vis, IR, and 1H NMR spectra. They were confirmed to be as LnL2(NO3)·4H2O (Ln=La, Pr, Nd, Sm, Y) and LnL2(NO3)·3H2O (Ln=Gd, Tb, Dy, Er, Yb), respectively. Furthermore, their coordination mechanism, spectral properties and probable molecular structures were also discussed. __________ Translated from Journal of Zhejiang University (Science Edition), 2005, 32 (5) (in Chinese)  相似文献   

7.
The synthesis of two new conjugated polymers based on the relatively under‐exploited monomer, 5,8‐dibromo‐2‐[5‐(2‐hexyldecyl)‐2‐thienyl]‐1H‐dithieno[3,2‐e:2′,3′‐g]benzimidazole (dithienobenzimidazole, DTBI ), and either 4,7‐bis[4‐hexyl‐5‐(trimethylstannyl)‐2‐thienyl]‐2,1,3‐benzothiadiazole ( BTD ) or 2,6‐bis(trimethylstannyl)‐4,8‐bis(5‐(2‐ethylhexyl) thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithiophene ( BDT ) is described. The polymers were synthesized via Stille polycondensation and characterized by traditional methods (1H NMR, gel‐permeation chromatography, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, thermal gravimetric analysis, differential scanning calorimetry, ultraviolet–visible spectroscopy, photoluminescence, and cyclic voltammetry). Prior to their synthesis, trimer structures were modeled by DFT calculations facilitating a further understanding of the systems' electronic and geometric structure. Polymers were titrated with acid and base to take advantage of their amphiprotic imidazole moiety and their optical response monitored with ultraviolet–visible spectroscopy. Finally, pristine polymer thin‐films were treated with acid and base to evaluate (de)protonation's effect on system electronics, but thin‐film degradation was encountered. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 60–69  相似文献   

8.
以Na7[α-PW11O39].nH2O,Sm(NO3)3.6H2O和(CH3)4NCl为原料,利用常规的水溶液方法合成了一例新的2∶2型二聚单缺位Keggin结构多金属氧酸盐稀土衍生物[(CH3)4N]6[(α-PW11O39H)Sm(H2O)3]2.9H2O(1);利用X射线单晶衍射表征了其晶体结构.结果表明,该二聚体属单斜晶系,P2(1)/c空间群,晶胞参数为:a=1.300 8(10)nm,b=2.219 0(17)nm,c=2.097 0(16)nm,β=100.992(16),Z=2,R1=0.074 6,wR2=0.182 6.二聚阴离子[{(α-PW11O39H)Sm(H2O)4}2]6-由2个[α-PW11O39H]6-缺位阴离子通过2个[Sm(H2O)4]3+配离子连接形成,Sm3+离子占据[α-PW11O39H]6-阴离子的缺位位置并取八配位单四方反棱柱构型,相邻的2个单取代阴离子[α-PW11O39H]6-通过2个Sm-Ot-W桥连成二聚物.  相似文献   

9.
We successfully synthesized the first conjugated polymer containing a bismuth atom in the conjugated main chain by incorporating a bismuth atom into the cyclopentadiene framework (bismole), which was constructed by a polymer reaction. A synthetic procedure and characterization of the obtained polymers were discussed. This bismole‐containing conjugated polymer exhibited moderate bluish green photoluminescence in solution. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4857–4863, 2006  相似文献   

10.
A series of novel low‐bandgap triphenylamine‐based conjugated polymers ( PCAZCN , PPTZCN , and PDTPCN ) consisting of different electron‐rich donor main chains (N‐alkyl‐2,7‐carbazole, phenothiazine, and cyclopentadithinopyrol, respectively) as well as cyano‐ and dicyano‐vinyl electron‐acceptor pendants were synthesized and developed for polymer solar cell applications. The polymers covered broad absorption spectra of 400–800 nm with narrow optical bandgaps ranging 1.66–1.72 eV. The highest occupied molecular orbital and lowest unoccupied molecular orbital levels of the polymers measured by cyclic voltammetry were found in the range of ?5.12 to ?5.32 V and ?3.45 to ?3.55 eV, respectively. Under 100 mW/cm2 of AM 1.5 white‐light illumination, bulk heterojunction photovoltaic devices composing of an active layer of electron‐donor polymers ( PCAZCN , PPTZCN , and PDTPCN ) blended with electron‐acceptor [6,6]‐phenyl‐C61‐butyric acid methyl ester or [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) in different weight ratios were investigated. The photovoltaic device containing donor PCAZCN and acceptor PC71BM in 1:2 weight ratio showed the highest power conversion efficiency of 1.28%, with Voc = 0.81 V, Jsc = 4.93 mA/cm2, and fill factor = 32.1%. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

11.
Novel bromine‐functionalized photocrosslinkable low‐bandgap copolymers, PBDTTT‐Br25 and PBDTTT‐Br50, are synthesized via Stille cross‐coupling polymerization for the purpose of stabilizing the film morphology in polymer solar cells (PSCs). Photocrosslinking of PBDTTT‐Br25 and PBDTTT‐Br50 copolymers dramatically improves the solvent resistance of the active layer without disrupting the molecular ordering and charge transport, which is confirmed by the insolubility of the films washed by organic solvents and by their thermal behavior. As a result, the formation of large aggregations of fullerene is suppressed in polymer:fullerene blend films even after prolonged thermal annealing, and the stability of the device is enhanced when compared with cells based on noncrosslinkable PBDTTT. The power conversion efficiency of the PSCs based on PBDTTT‐Br25 and PBDTTT‐Br50 reaches 5.17% and 4.48%, respectively, which is improved obviously in comparison with that (4.26%) of the PSCs based on the control polymer PBDTTT. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3123–3131  相似文献   

12.
Polyfluorene homopolymer ( P1 ) and its carbazole derivatives ( P2 – P4 ) have been prepared with good yield by Suzuki coupling polymerization. P2 is an alternating copolymer based on fluorene and carbazole; P3 is a hyperbranched polymer with carbazole derivative as the core and polyfluorene as the long arms; P4 is a hyperbranched polymer with carbazole derivative as the core and the alternating fluorene and carbazole as the long arms. These polymers show highly thermal stability, and their structures and physical properties are studied using gel permeation chromatography, 1H NMR, 13C NMR, elemental analysis, Fourier transform infrared spectroscopy, thermogravimetry, UV–vis absorption, photoluminescence, and cyclic voltammetry (CV). The influence of the incorporation of carbazole and the hyperbranched structures on the thermal, electrochemical, and electroluminescent properties has been investigated. Both carbazole addition and the hyperbranched structure increase the thermal and photoluminescent stability. The CV shows an increase of the HOMO energy levels for the derivatives, compared with polyfluorene homopolymer ( P1 ). The EL devices fabricated by these polymers exhibit pure blue‐light‐emitting with negligible low‐energy emission bands, indicating that the hyperbranched structure has a strong effect on the PLED characteristics. The results imply that incorporating carbazole into polyfluorene to form a hyperbranched structure is an efficient way to obtain highly stable blue‐light‐emitting conjugated polymers, and it is possible to adjust the property of light‐emitting polymers by the amount of carbazole derivative incorporated into the polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 790–802, 2008  相似文献   

13.
Two phenothiazine‐based conjugated polymers, poly(3, 7‐divinylene‐N‐octyl‐phenothiazine‐alt‐benzo‐2,1,3‐ thiadiazole) (PQS) and poly(3,7‐divinylene‐N‐octyl‐phenothiazine‐alt‐benzo‐2,1,3‐selenodiazole) (PQSe) were synthesized by Heck coupling reaction. The chemical structures of the two polymers were confirmed by 1H‐NMR and Ft‐IR. They showed good solubility in some common organic solvents such as tetrahydrofuran (THF), chloroform. The weight‐average molecular weight (Mw) of the polymers determined by GPC in THF against polystyrene standards was 3.7 × 103 for PQS and 1.9 × 103 for PQSe, respectively. The temperatures of 5% weight loss (T5) were 385.0°C for PQS and 324.0°C for PQSe, respectively, determined by TGA measurements under nitrogen ambience. UV–vis absorption spectra of the polymer films showed the absorption maxima at 537 nm for PQS and 539 nm for PQSe, with the full width at half maximum (FWHM) of 190 and 230 nm, respectively. The optical band gaps ( ) of the polymer films are 1.86 eV for PQS and 1.80 eV for PQSe, respectively. As the polymers have low‐band‐gap and broad absorption in the visible region, they may be used as potential light‐harvesting materials for photovoltaic devices (PVDs). Furthermore, photoluminescence (PL) spectra of the polymer solutions showed the emission maxima at 698 nm for PQS and 709 nm for PQSe, with FWHM of 152 nm and 167 nm, respectively, which revealed that these two polymers may be used as red and near infrared light‐emitting materials for polymeric light‐emitting diodes (PLEDs). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Two model polymers, containing fluorene as an electron‐donating moiety and benzothiadiazole (BT) as an electron‐accepting moiety, have been synthesized by Suzuki coupling reaction. Both polymers are composed of the same chemical composition, but the BT acceptor can be either at a side‐chain (i.e., S‐polymer) or along the polymer main chain (i.e., M‐polymer). Their optical, electrochemical, and photovoltaic properties, together with the field‐effect transistor (FET) characteristics, have been investigated experimentally and theoretically. The FET carrier mobilities were estimated to be 5.20 × 10?5 and 3.12 × 10?4 cm2 V?1 s?1 for the S‐polymer and M‐polymer, respectively. Furthermore, polymeric solar cells (PSCs) with the ITO/PEDOT:PSS/S‐polymer or M‐polymer:PC71BM(1:4)/Al structure were constructed and demonstrated to show a power conversion efficiency of 0.82 and 1.24% for the S‐polymer and M‐polymer, respectively. The observed superior device performances for the M‐polymer in both FET and PSCs are attributable to its relatively low band‐gap and close molecular packing for efficient solar light harvesting and charge transport. This study provides important insights into the design of ideal structure–property relationships for conjugate polymers in FETs and PSCs. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
Three different types of photocrosslinkable groups into a low band‐gap donor–acceptor‐conjugated polymer, namely poly{benzo[1,2‐b:4,5‐b′]dithiophene‐alt‐ thieno[3,4‐b]thiophene} (PBT), were developed to comparatively investigate the effect of the photocrosslinkable groups on the thermal stability of bulk heterojunction solar cells. Compared with vinyl groups, bromine‐ and azide‐ photocrosslinkable groups are more prompt for photocrosslinking to yield a denser crosslinking network, probably due to the different crosslinking mechanisms and reaction rates. In contrast to the reference device decreasing to less than 10% of its initial efficiency value after 80 h of annealing at 150 °C, a great improvement in the thermal stability of performance of all these crosslinked functional copolymers devices demonstrates that photocrosslinking can effectively improve the thermal stability of the active layer by suppressing [6,6]‐phenyl‐C61‐butyric acid methyl diffusion and phase separation. Furthermore, the solar cells with crosslinked bromine‐ and azide‐functionalized PBT polymers showed very thermally stable photovoltaic device performance by retaining 78 and 66% of their initial device efficiency, respectively, whereas vinyl‐functionalized PBT devices retained only 51% of its initial value after long‐time thermal annealing. This suggests that an appropriate crosslinking network with homogenous active morphology could dramatically enhance the device stability without sacrificing the performance. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4156–4166  相似文献   

16.
Three new polymers poly(3,4′′′‐didodecyl) hexaselenophene) (P6S), poly(5,5′‐bis(4,4′‐didodecyl‐2,2′‐biselenophene‐5‐yl)‐2,2′‐biselenophene) (HHP6S), and poly(5,5′‐bis(3′,4‐didodecyl‐2,2′‐biselenophene‐5‐yl)‐2,2′‐biselenophene) (TTP6S) that have the same selenophene‐based polymer backbone but different side chain patterns were designed and synthesized. The weight‐averaged molecular weights (Mw) of P6S, HHP6S, and TTP6S were found to be 19,100, 24,100, and 19,700 with polydispersity indices of 2.77, 1.48, and 1.41, respectively. The UV–visible absorption maxima of P6S, HHP6S, and TTP6S are at 524, 489, and 513 nm, respectively, in solution and at 569, 517, and 606 nm, respectively, in the film state. The polymers P6S, HHP6S, and TTP6S exhibit low band gaps of 1.74, 1.95, and 1.58 eV, respectively. The field‐effect mobilities of P6S, HHP6S, and TTP6S were measured to be 1.3 × 10?4, 3.9 × 10?6, and 3.2 × 10?4 cm2 V?1 s?1, respectively. A photovoltaic device with a TTP6S/[6,6]‐phenyl C71‐butyric acid methyl ester (1:3, w/w) blend film active layer was found to exhibit an open circuit voltage (VOC) of 0.71 V, a short circuit current (JSC) of 5.72 mA cm?2, a fill factor of 0.41, and a power conversion efficiency (PCE) of 1.67% under AM 1.5 G (100 mW cm?2) illumination. TTP6S has the most planar backbone of the tested polymers, which results in strong π–π interchain interactions and strong aggregation, leading to broad absorption, high mobility, a low band gap, and the highest PCE. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
We report synthesis of the modified fluorene polymers tethered to the heterogeneous types of the fluorescent dyes at the cardo carbon for obtaining the dual‐emissive solid materials. A series of the alternating fluorene copolymers modified with pyrene or 9,10‐diphenylanthracene and BODIPY at the cardo carbon based on the red‐emissive donor–acceptor structure were prepared, and their characteristics were examined. From the measurements of the optical properties, the energy transfer efficiencies were evaluated. In summary, variable energy transfer efficiencies were observed between the side chains and from the side chain to the main chain. It was indicated that the energy transfer efficiencies were strongly depended on the types of the energy donor and the detection conditions as such in the solution or film. Furthermore, it was found that the cardo fluorene units can contribute to the suppression of the energy transfer in the condensed state. Finally, the dual‐emissive polymers were obtained in the film states. This is the first example, to the best of our knowledge, not only to offer systematic information on the energy transfer between the dye molecules and the polymer main‐chains via the cardo structure but also to demonstrate the polymer‐based optical materials with the dual‐emission properties. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2026–2035  相似文献   

18.
近年来对近红外发光稀土配合物的研究逐渐引起人们的重视[1 7]。本文合成了双水杨醛缩乙二胺(C16H16N2O2,H2L)合Nd(Ⅲ)、Gd(Ⅲ)、Yb(Ⅲ)配合物,报道该Shiff碱配体对Nd(Ⅲ)、Yb(Ⅲ)离子近红外发光的敏化作用。1 实验部分浓盐酸和盐酸羟胺溶解稀土氧化物(广东珠江冶炼厂产品,纯度大于99 95%)并将所得溶液蒸至近干,得到相应的稀土氯化物,加入无水乙醇溶解得LnCl3(Ln=Nd,Yb,Gd),回流条件下将稀土氯化物乙醇溶液逐滴加入双水杨醛缩乙二胺[8]乙醇溶液中,稀土氯化物和配体为1∶2(V∶V)。回流反应10h后得…  相似文献   

19.
An alternating copolymer, Copoly‐1 , of thiophene and N‐(phenylethynyl)pyrrole was prepared by palladium‐catalyzed polycondensation. Powder X‐ray diffraction (XRD) analysis indicated that Copoly‐1 formed a stacked packing structure with doubly‐running polymer main chains. Optical data support the molecular and packing structures of Copoly‐1 . © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2219–2224, 2005  相似文献   

20.
Highly random copolymers of ϵ-caprolactone (CL) and D ,L -lactide (LA) were synthesized by a new catalyst system, rare earth chloride–propylene oxide (PO) system. In the presence of propylene oxide, all rare earth chlorides tested are highly effective for the copolymerization. The influences of reaction conditions on the copolymerization catalyzed by the NdCl3-5PO system have been investigated in detail. The reactivity ratios of ϵ-caprolactone and D ,L -lactide were determined and show that the copolymerization with this new rare earth catalyst is closer to ideal copolymerization than reported for other catalysts. The microstructure of copolymer analyzed by 13C-NMR shows that the monomer units in the copolymer is near to completely random distribution with a short average monomer sequence length. The DSC measurement confirms the high randomness of the chain structure. The mechanism studied by NMR indicates that the rare earth alkoxide generated by the reaction of rare earth chloride with propylene oxide initiates the copolymerization, and then proceeds via a “coordination-insertion” mechanism with acyl-oxygen bond cleavage of CL and LA. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号