首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiwalled carbon nanotubes (MWNTs) were effectively functionalized with KMnO4 in the presence of a phase‐transfer catalyst at room temperature. The hydroxyl functionalized MWNTs were reacted with a vinyl‐group carrying silane‐coupling agent and the terminal vinyl groups were used to fabricate polystyrene (PS) brushes by solution polymerization. Finally, PS‐encapsulated MWNTs were obtained. The synthesis results were verified from FT‐Raman, thermal gravimetric analysis, energy dispersive X‐ray analysis, and transmission electron microscope. PS‐encapsulated MWNTs had much improved dispersion stability in hydrophobic medium, toluene since grafted hydrophobic PS interacts with media and has improved compatibility. This functionalization technique would provide a facile route to prepare various polymer brushes on the surface of MWNTs to improve the dispersion of MWNTs for potential applications. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4413–4420, 2007  相似文献   

2.
Multiwalled carbon nanotubes (MWNTs) were functionalized by a free‐radical reaction of vinyltriethoxysilane and were blended with poly(urea urethane) (PUU) containing poly(dimethylsiloxane) as a soft segment. PUU was end‐capped with aminopropyltriethoxysilane (A‐silane) or phenyltriethoxysilane (P‐silane).A‐silane‐end‐capped PUU was covalently bonded to functionalized MWNTs, whereas P‐silane‐end‐capped PUU was noncovalently bonded to pristine MWNTs by a π–π interaction. Fourier transform infrared, Raman spectra, and thermogravimetric analysis confirmed the functionalization of MWNTs. The results showed that the optimal reaction time of the functionalization of MWNT was 8 h, and the organic content of the modified carbon nanotubes reached 35.22%. Solid‐state nuclear magnetic resonance and dynamic mechanical analysis were used to investigate the molecular structure and molecular mobility of the carbon‐nanotube/PUU nanocomposites. A‐silane PUU covalently bonded to MWNTs showed a considerable reduction in the molecular motion of the soft segment, which led to the glass‐transition temperature decreasing from ?117 to ?127 °C as MWNTs were incorporated. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6084–6094, 2005  相似文献   

3.
The effects of pristine and amino‐functionalized multiwalled carbon nanotubes (MWNTs) on the crystallization behaviors of nylon‐6 were investigated by differential scanning calorimetry and X‐ray diffraction. The results indicate the presence of polymorphism in nylon‐6 and its composites, which is dependent on the MWNTs concentration and the cooling rate. More MWNTs and slow cooling from the melt favors the formation of α crystalline form. With the increase in cooling rates, the crystallinity of neat nylon‐6 decreases, and that of the composites decreases initially but increases afterward. Moreover, the degree of crystallinity of the composites is higher than neat nylon‐6 under high cooling rates, counter to what is observed under low cooling rates. The heterogeneous nucleation induced by MWNTs and the restricted mobility of polymer chains are considered as the main factors. Furthermore, addition of MWNTs increases the crystallization rate of α crystalline form but amino‐functionalization of MWNTs weakens this effect. The influence of thermal treatment on the crystalline structure of MWNTs/nylon‐6 composites is also discussed. A γ–α phase transition takes place at lower temperature for MWNTs/nylon‐6 composites than for nylon‐6. The annealing peaks of the composites annealed at 160 °C are higher than that of neat nylon‐6, and the highest annealing peak is obtained for amino‐functionalized MWNTs/nylon‐6 composites. This phenomenon is closely related to the different nucleation and recrystallization behaviors produced by various MWNTs in confined space. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1499–1512, 2006  相似文献   

4.
Poly(ethylene terephthalate) (PET) nanocomposites were prepared by melt‐extruding mixtures of PET and functionalized multiwalled carbon nanotubes (MWNTs) with some interaction with PET molecules. For the functionalization of MWNTs, benzyl isocyanate and phenyl isocyanate with different molecular flexibility were employed on the surface of the MWNTs via chemical modification, respectively. The reaction for functionalization of MWNTs was confirmed by FTIR and transmission electron microscopy (TEM) measurements. TEM observations indicated that both benzyl and phenyl isocyanate groups covered the surface of the MWNTs after functionalization. The PET nanocomposites containing isocyanate groups showed improved mechanical properties, including the tensile strength and tensile modulus, compared with those with pristine and acid‐treated nanotubes. These improvements were ascribed to π–π interactions between the aromatic rings of PET molecules and the isocyanate group in MWNTs. The functionalized MWNTs showed a better dispersion of carbon nanotubes in the matrix polymer and a different fractured cross‐section morphology in scanning electron microscope measurements relative to the pristine MWNTs. The crystallinity of the functionalized MWNT‐PET nanocomposites was significantly higher than that of the pristine and acid‐treated MWNTs. FTIR results indicated that the presence of carbon nanotubes induced trans‐conformation of PET chains, and trans conformation was particularly dominant in PET composites incorporating MWNT‐phenyl. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 900–910, 2008  相似文献   

5.
Polypropylene (PP) nanocomposites with three different functionalized‐multiwalled nanotubes (F‐MWNTs) are compared in terms of their thermomechanical properties, morphology, oxygen permeability, and optical transparency. The F‐MWNTs dodecanol‐MWNT, dodecylamine‐MWNT, and 1,1,1,3,3,3‐hexafluoro‐2‐phenyl‐2‐propanol‐MWNT were combined with PP to produce hybrid films. The variations of their properties with the matrix polymer F‐MWNT content are discussed. Transmission electron microscopy photographs show that most of the F‐MWNTs are dispersed homogeneously in the matrix polymer on the nanoscale, although some agglomerated F‐MWNT particles are formed. Even composites with low F‐MWNT contents (≤3 wt %) exhibit much better thermomechanical values than pure PP. The gas permeability of the hybrids was found to decrease linearly with increases in the F‐MWNT content of the PP matrix. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

6.
Multiwalled carbon nanotubes (MWNTs) were functionalized with 2‐hydroxyethyl benzocyclobutene (BCB‐EO) through a Diels–Alder cycloaddition reaction. The functionalized MWNTs were utilized for the surface initiated ring opening (ROP) catalyzed and anionic polymerization of ε‐caprolactone (ε‐CL) and ethylene oxide (EO), respectively. The kinetics of the ROP of ε‐CL was monitored through thermogravimetric analysis (TGA) which revealed that the polymerization proceeds very fast as compared to that of EO and that both polymerizations could be controlled with time. 1H NMR, Raman and FTIR spectroscopy, TGA, DSC, and transmission electron microscopy (TEM) were employed for the characterization of these polymer/CNT hybrids. DSC results showed that a remarkable nucleation effect is produced by MWNTs that reduced the supercooling needed for crystallization of both PεCL and PEO. Furthermore, the isothermal crystallization kinetics of the grafted PεCL and PEO was substantially accelerated compared to the neat polymers. The strong impact on the nucleation and crystallization kinetics is attributed to the covalent MWNT‐polymer bonding. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4379–4390, 2009  相似文献   

7.
Poly(dipentylsilylene) copolymers containing n‐pentyl‐n‐oct‐7‐enylsilane units were prepared by reductive coupling of the corresponding dichlorosilanes. Linear high molecular weight and some crosslinked polymer were obtained. The soluble products exhibited optical and thermal properties like poly(dipentylsilylene). Differential scanning calorimetry was used to investigate crystallization and to monitor thermal crosslinking. Vinyl functionalized side chains were hydrosilylated with dipentylsilane and dimethylchlorosilane and crosslinked via the side chains. Hydrosilylation with di‐n‐pentyl(trimethylsiloxypropyl)silane led to a partial hydroxy functionalization of the polysilylene and enabled anionic PEO grafting of the poly(dipentylsilylene). © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2306–2318, 2000  相似文献   

8.
Covalent functionalization of alkyne‐decorated multiwalled carbon nanotubes (MWNTs) with a well‐defined, azide‐derivatized, thermoresponsive diblock copolymer, poly(N,N‐dimethylacrylamide)‐poly(N‐isopropylacrylamide) (PDMA‐PNIPAM) was accomplished by the Cu(I)‐catalyzed [3 + 2] Huisgen cycloaddition. It was found that this reaction could simultaneously increase the molecular size and bonding density of grafted polymers when PDMA‐PNIPAM micelles were employed in the coupling system. On the other hand, attachment of molecularly dissolved unimers of high‐molecular weight onto the nanotube resulted in low‐graft density. The block copolymer bearing azide groups at the PDMA end was prepared by reversible addition–fragmentation transfer polymerization, which formed micelles with a diameter of ~40 nm at temperatures above its critical micelle temperature. Scanning electron microscopy was utilized to demonstrate that the coupling reaction was successfully carried out between copolymer micelles and alkyne‐bearing MWNTs. FTIR spectroscopy was utilized to follow the introduction and consumption of alkyne groups on the MWNTs. Thermogravimetric analysis indicated that the functionalized MWNTs consisted of about 45% polymer. Transmission electron microscopy was utilized to image polymer‐functionalized MWNTs, showing relatively uniform polymer coatings present on the surface of nanotubes. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7187–7199, 2008  相似文献   

9.
Polypropylene (PP)/nylon 6/clay composites were prepared by compounding of PP, which had previously been treated with two kinds of silane compounds, with a master batch composed of 90 wt % of nylon 6 and 10 wt % of octadecyl amine‐modified sodium montmorillonite (NM10). The morphology of the composites was investigated by means of SEM, TEM, XRD, and energy‐dispersive X‐ray analysis. All of the composites exhibited a phase‐separated morphology, irrespective of whether the PP was modified with the silane compounds or not. However, adhesive strength between the modified PP and NM10 was stronger than that between neat PP and NM10. Moreover, the PP grafted with 3‐(trimethoxysilyl)propyl methacrylate (PP2) reacted with the silanol groups of the clay to form PP‐clay hybrid during the compounding, which acted as a compatibilizer for the PP/nylon 6/clay composite. PP2NM composite (PP2/NM10 80/20 on weight basis) exhibited a peculiar morphology, in that the PP‐rich phase formed island domains within the nylon 6‐rich domains, which were in turn dispersed in the PP‐rich continuous matrix. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 607–615, 2007.  相似文献   

10.
Poly(L ‐lactide) (PLLA)/multiwall carbon nanotube (MWNT) composites were prepared by the solvent‐ultrasonic‐casting method. Only very low concentrations of MWNTs (<0.08 wt %) were added in the composites. Isothermal and nonisothermal crystalline measurements were carried out on PLLA/MWNT composites to investigate the effect of MWNTs on PLLA crystalline behavior. DSC results showed that the incorporation of MWNTs significantly shortened the crystalline induction time and increased the final crystallinity of the composite, which indicated MWNTs have a strong nucleation effect on PLLA even at very low concentrations. The nonisothermal crystallization measurements showed that the MWNTs greatly speed up crystallization during cooling. From isothermal crystallization results, both PLLA and PLLA/MWNT composites samples closely followed a relationship based on Lauritzen‐Hoffman theory, with the regime II to III transition shifting to lower temperature with increasing MWNT concentration. A double melting peak appeared in both nonisothermal and isothermal measurements. The conditions under which it appeared were found to closely depend on the regime II‐III transition temperature obtained from Lauritzen‐Hoffman theory. From the magnitude and position of melting peaks, it is proposed that the double melting peak is caused by a disorder‐order crystal phase transition. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2341–2352, 2009  相似文献   

11.
The effect of a sorbitol nucleating agent on crystallization of polypropylene (PP) in droplets was studied. Layer‐multiplying coextrusion was used to fabricate assemblies of 257 layers, in which PP nanolayers alternated with thicker polystyrene (PS) layers. The concentration of a commercial nucleating agent, Millad 3988 (MD) in the layers was varied up to 2 wt %. When the assembly was heated into the melt, interfacial driven breakup of the 12 nm PP layers produced a dispersion of submicron PP particles in a PS matrix. Analysis of optical microscope images and atomic force microscope images indicated that the particle size was not affected by the presence of MD. The crystallization behavior of the particle dispersion was characterized by thermal analysis. In the absence of a nucleating agent, the submicron particles crystallized almost exclusively by homogeneous nucleation at about 40 °C. Addition of a nucleating agent to the PP layers offered a unique opportunity to study the nature of heterogeneous nucleation. Nucleation by MD resulted in fractionated crystallization of the submicron PP particles. The concentration dependence of the multiple crystallization exotherms was interpreted in terms of the binary polypropylene‐sorbitol phase diagram. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1788–1797, 2007  相似文献   

12.
Diels–Alder cycloaddition reactions were used to functionalize multiwalled carbon nanotubes (MWNTs) with 1‐benzocylcobutene‐1′‐phenylethylene (BCB‐PE) or 4‐hydroxyethylbenzocyclobutene (BCB‐EO). The covalent functionalization of the nanotubes with these initiator precursors was verified by FTIR and thermogravimetric analysis (TGA). After appropriate transformations/additions, the functionalized MWNTs were used for surface initiated anionic and ring opening polymerizations of ethylene oxide and ε‐caprolactone (ε‐CL), respectively. The OH‐end groups were transformed to isopropylbromide groups by reaction with 2‐bromoisobutyryl bromide, for subsequent atom transfer radical polymerization of styrene or 2‐dimethylaminoethyl methacrylate to afford the final diblock copolymers. 1H NMR, differential scanning calorimetry (DSC), TGA, and transmission electron microscopy (TEM) were used for the characterization of the nanocomposite materials. TEM images showed the presence of a polymer layer around the MWNTs as well as the dissociation of MWNT bundles. Consequently, this general methodology, employing combinations of different polymerization techniques, increases the diversity of diblocks that can be grafted from MWNTs. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1104–1112, 2010  相似文献   

13.
Binary CNBR/PP‐g‐GMA and ternary CNBR/PP/PP‐g‐GMA thermoplastic elastomers were prepared by reactive blending carboxy nitrile rubber (CNBR) powder with nanometer dimension and polypropylene functionalized with glycidyl methacrylate (PP‐g‐GMA). Morphology observation by using an atomic force microscope (AFM) and TEM revealed that the size of CNBR dispersed phase in CNBR/PP‐g‐GMA binary blends was much smaller than that of the corresponding CNBR/PP binary blends. Thermal behavior of CNBR/PP‐g‐GMA and CNBR/PP blends was studied by DSC. Comparing with the plain PP‐g‐GMA, Tc of PP‐g‐GMA in CNBR/PP‐g‐GMA blends increased about 10 °C. Both thermodynamic and kinetic effects would influence the crystallization behavior of PP‐g‐GMA in CNBR/PP‐g‐GMA blends. At a fixed content of CNBR, the apparent viscosity of the blending system increased with increasing the content of PP‐g‐GMA. FTIR spectrum verified that the improvement of miscibility of CNBR and PP‐g‐GMA was originated from the reaction between carboxy end groups of CNBR and epoxy groups of GMA grafted onto PP molecular chains. Comparing with CNBR/PP blends, the tensile strength, stress at 100% strain, and elongation at break of CNBR/PP‐g‐GMA blends were greatly improved. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1042–1052, 2004  相似文献   

14.
A new method was developed for preparing polystyrene‐functionalized multiple‐walled carbon nanotubes (MWNTs) through the termination of anionically synthesized living polystyryllithium with the acyl chloride functionalities on the MWNTs. The acyl chloride functionalities on the MWNTs were in turn obtained by the formation of carboxyls via chemical oxidation and their conversion into acyl chlorides. The polystyrene‐functionalized MWNTs had good dispersion in common organic solvents, and this indicated good compatibility for the preparation of styrenic nanocomposite materials. The synthesis results and characterization data for the functionalized MWNTs, collected via Fourier transform infrared, thermogravimetric analysis, solid‐state NMR, and electron microscopy, are presented and discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5802–5810, 2004  相似文献   

15.
Differential scanning calorimetry (DSC), polarized optical microscopy, and X‐ray diffraction methods were used to investigate the isothermal crystallization behavior and crystalline structure of poly(?‐caprolactone) (PCL)/multiwalled carbon nanotube (MWNT) composites. PCL/MWNT composites were prepared via the mixing of a PCL polymer solution with carboxylic groups containing multiwalled carbon nanotubes (c‐MWNTs). Both Raman and Fourier transform infrared spectra indicated that carboxylic acid groups formed at both ends and on the sidewalls of the MWNTs. A transmission electron microscopy micrograph showed that c‐MWNTs were well separated and uniformly distributed in the PCL matrix. DSC isothermal results revealed that introducing c‐MWNTs into the PCL structure caused strongly heterogeneous nucleation induced by a change in the crystal growth process. The activation energy of PCL drastically decreased with the presence of 0.25 wt % c‐MWNT in PCL/c‐MWNT composites and then increased with increasing MWNT content. The result indicated that the addition of c‐MWNT to PCL induced heterogeneous nucleation (lower total activation energy) at a lower c‐MWNT content and then reduced the transportation ability of polymer chains during crystallization processes at a higher MWNT content (higher total activation energy). A correlation between the crystallization kinetics, melting behavior, and crystalline structure of PCL/c‐MWNT composites was also discussed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 598–606, 2006  相似文献   

16.
The functionalized multi‐walled carbon nanotubes (MWNT) had been prepared by free radical reaction with vinyltriethoxysilane. Polydimethylsiloxane (PDMS)‐based poly(urea urethane) (PUU) was also synthesized. PUU was further end‐capped with aminopropyltriethoxysilane (A‐silane), or with phenyltrimethoxysilane (P‐silane). Fourier transform infrared (FTIR), Raman spectra and thermogravimetric analysis (TGA) confirmed the functionalization of MWNT. The Mn and Mw of PUU were 85,123 and 235,876 g/mol, respectively. Both A‐silane end‐capped PUU and P‐silane end‐capped PUU showed improved dispersion of MWNT compared with that of PUU and MWNT. Moreover, the reduced discrepancy of surface electrical resistance of the two sides of the MWNT/PUU nanocomposite film was found due to the homogeneous dispersion of MWNT. The microwave absorption and tensile strength of MWNT/PUU were also improved by the well dispersion of MWNT in PUU matrix. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1096–1105, 2006  相似文献   

17.
A new dual‐amplification strategy of electrochemical signaling from antigen–antibody interactions was proposed via backfilling gold nanoparticles on (3‐mercaptopropyl) trimethoxysilane sol‐gel (MPTS) functionalized interface. The MPTS was employed not only as a building block for the electrode surface modification but also as a matrix for ligand functionalization with first amplification. The second signal amplification strategy introduced in this study was based on the backfilling immobilization of nanogold particles to the immunosensor surface. Several coupling techniques, such as with nanogold but not MPTS or with MPTS but not nanogold, were investigated for the determination of carcinoembryonic antigen (CEA) as a model, and a very good result was obtained with nanogold and MPTS coupling immunosensor. With the noncompetitive format, the formation of the antigen–antibody complex by a simple one‐step immunoreaction between the immobilized anti‐CEA and CEA in sample solution introduced membrane potential change before and after the antigen–antibody interaction. Under optimal conditions, the proposed immunosensor exhibited a good electrochemical behavior to CEA in a dynamic concentration range of 4.4 to 85.7 ng/mL with a detection limit of 1.2 ng/mL (at 3 δ). Moreover, the precision, reproducibility and stability of the as‐prepared immunosensor were acceptable. Importantly, the proposed methodology would be valuable for diagnosis and monitoring of carcinoma and its metastasis.  相似文献   

18.
In this work, multiwalled carbon nanotubes (MWNTs) were surface‐modified and grafted with poly(L ‐lactide) to obtain poly(L ‐lactide)‐grafted MWNTs (i.e. MWNTs‐g‐PLLA). Films of the PLLA/MWNTs‐g‐PLLA nanocomposites were then prepared by a solution casting method to investigate the effects of the MWNTs‐g‐PLLA on nonisothermal and isothermal melt‐crystallizations of the PLLA matrix using DSC and TMDSC. DSC data found that MWNTs significantly enhanced the nonisothermal melt‐crystallization from the melt and the cold‐crystallization rates of PLLA on the subsequent heating. Temperature‐modulated differential scanning calorimetry (TMDSC) analysis on the quenched PLLA nanocomposites found that, in addition to an exothermic cold‐crystallization peak in the range of 80–120 °C, an exothermic peak in the range of 150–165 °C, attributed to recrystallization, appeared before the main melting peak in the total and nonreversing heat flow curves. The presence of the recrystallization peak signified the ongoing process of crystal perfection and, if any, the formation of secondary crystals during the heating scan. Double melting endotherms appeared for the isothermally melt‐crystallized PLLA samples at 110 °C. TMDSC analysis found that the double lamellar thickness model, other than the melting‐recrystallization model, was responsible for the double melting peaks in PLLA nanocomposites. Polarized optical microscopy images found that the nucleation rate of PLLA was enhanced by MWNTs. TMDSC analysis found that the incorporation of MWNTs caused PLLA to decrease the heat‐capacity increase (namely, ΔCp) and the Cp at glass transition temperature. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1870–1881, 2007  相似文献   

19.
聚丙烯/多壁碳纳米管复合材料的热性能和流变性能   总被引:5,自引:0,他引:5  
用熔融共混法制备了聚丙烯多壁碳纳米管(PP MWNTs)复合材料,TGA研究表明在氮气气氛下碳纳米管显著增加了聚丙烯基体的热稳定性.3wt%MWNTs可使PP热分解起始温度提高44℃.非等温结晶研究表明MWNTs对PP基体的结晶行为没有明显的影响.流变测试结果表明PP MWNTs复合材料的储能模量G′和损耗模量G″随着MWNTs含量增加逐渐增大.1wt%MWNTs的PP聚合物的零剪切粘度最低,5wt%MWNTs的PP聚合物的零剪切粘度最高,PP和3wt%MWNTs的PP纳米聚合物的零剪切粘度居于二者之间,随着频率的增加,剪切稀化作用越来越明显,呈现出假塑性流体行为.含5wt%MWNTs的PP复合材料的体积和表面电阻率与纯PP相比分别下降了9个和4个数量级,表明少量的MWNTs可以显著改变PP的电学性能.  相似文献   

20.
Biodegradable poly(3‐hydroxybutyrate) (PHB)/functionalized multi‐walled carbon nanotubes (f‐MWNTs) nanocomposite was prepared in this work by solution casting method at 2 wt% f‐MWNTs loading. Scanning electron microscopy and transmission electron microscopy observations indicate a homogeneous distribution of f‐MWNTs in the PHB matrix. Nonisothermal melt crystallization, overall isothermal melt crystallization kinetics, and crystalline morphology of neat PHB and the PHB/f‐MWNTs nanocomposite were studied in detail. It is found that the presence of f‐MWNTs enhances the crystallization of PHB during nonisothermal and isothermal melt crystallization processes in the nanocomposite due to the heterogeneous nucleation effect of f‐MWNTs. Moreover, the incorporation of a small quantity of f‐MWNTs apparently improves the thermal stability of the PHB/f‐MWNTs nanocomposite with respect to neat PHB. Two methods are employed to study the activation energies of thermal degradation for both the neat PHB and the PHB/f‐MWNTs nanocomposite. The activation energy of thermal degradation of the PHB/f‐MWNTs nanocomposite is higher than that of neat PHB. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号