首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A model based on the data available in the literature on the computer simulation of amorphous silicon has been proposed for describing the specific features of the plastic flow of amorphous covalent materials. The mechanism of plastic deformation involves homogeneous nucleation and growth of inclusions of a liquidlike phase under external shear stress. Such inclusions experience plastic shear, which is modeled by glide dislocation loops. The energy changes associated with the nucleation of these inclusions at room and increased temperatures have been calculated. The critical stress has been found, at which the barrierless nucleation of inclusions becomes possible. It has been shown that this stress decreases with an increase in temperature. According to the calculations, the heterogeneous (homogeneous) plastic flow of an amorphous material should be expected at relatively low (high) temperatures. Above the critical stress, the homogeneous flow is gradually replaced by the heterogeneous flow.  相似文献   

2.
A three-dimensional model for the generation of split dislocations by grain boundaries in nanocrystalline A1 is proposed. In terms of this model, rectangular glide split-dislocation half-loops nucleate at glide lattice dislocation loops pressed to grain boundaries by an applied stress. The level of the applied stress and the grain size at which the emission of such dislocation half-loops becomes energetically favorable are determined. The dependences of the stacking-fault width on the grain size and the applied stress are found. The anomalously wide stacking faults experimentally detected in nanocrystalline A1 are shown to be caused by high internal stresses forming in the stages of preparation, treatment, or local loading of nanocrystalline samples.  相似文献   

3.
A theoretical model is proposed for the homogeneous nucleation of glide dislocation loops in nanocrystalline ceramics under deformation at low and high temperatures. The nucleation of a dislocation loop in a crystalline grain is considered an ideal nanoscopic shear whose magnitude (the Burgers vector of the dislocation) increases gradually as the loop is nucleating. The characteristics of the homogeneous nucleation of glide dislocation loops in nanocrystalline ceramics based on cubic silicon carbide are calculated. It is shown that, in general, the homogeneous nucleation of a dislocation loop in nanocrystalline ceramics at high temperatures proceeds in two stages, namely, the athermal nucleation of a loop of a “noncrystallographic” partial dislocation and its thermally activated transformation into an ordinary partial lattice dislocation loop.  相似文献   

4.
Clusters of self-interstitial atoms are formed in metals by high-energy displacement cascades, often in the form of small dislocation loops with a perfect Burgers vector. In isolation, they are able to undergo fast, thermally activated glide in the direction of their Burgers vector, but do not move in response to a uniform stress field. The present work considers their ability to glide under the influence of the stress of a gliding dislocation. If loops can be dragged by a dislocation, it would have consequences for the effective cross-section for dislocation interaction with other defects near its glide plane. The lattice resistance to loop drag cannot be simulated accurately by the elasticity theory of dislocations, so here it is investigated in iron and copper by atomic-scale computer simulation. It is shown that a row of loops lying within a few nanometres of the dislocation slip plane can be dragged at very high speed. The drag coefficient associated with this process has been determined as a function of metal, temperature and loop size and spacing. A model for loop drag, based on the diffusivity of interstitial loops, is presented. It is tested against data obtained for the effects of drag on the stress to move a dislocation and the conditions under which a dislocation breaks away from a row of loops.  相似文献   

5.
Structural mechanisms and features of brittle and quasi-brittle fracture of nanocrystalline materials are theoretically analyzed. The role of size effects and internal stresses caused by a nonequilibrium structure during brittle trans-and intercrystallite fracture is studied. The dependence of the nanocrystalline material durability on the working stress and grain size is calculated. The conditions for certain mechanisms of plastic deformation to be operative in nanocrystalline materials are analyzed. The influence of the grain-boundary and dislocation mechanisms of plastic deformation on the conditions of nanocrack formation is studied. The dependence of the fracture toughness of nanomaterials on structure parameters is calculated.  相似文献   

6.
The experiments on electron irradiation of yttrium-stabilized zirconium oxide samples show the formation of strong elastic fields near interstitial dislocation loops. The fields increase with an increase in the loop radius and, when the loop radius reaches a certain critical value, the loops became unstable due to the beginning of plastic deformation and the formation of a dislocation network. The mechanism of the occurrence of this instability is suggested. It is based on the accumulation of charges at dislocation loops due to ionization processes in an electron-irradiated dielectric. It is shown that the accumulation of the electric charge at growing dislocation loops in dielectrics may be responsible for an increase in elastic stresses near dislocation loops and for their instability because of the beginning of plastic deformation near the loops when stresses at growing loops become close to the theoretical yield stress of the material.  相似文献   

7.
第伍旻杰  胡晓棉 《物理学报》2015,64(17):170201-170201
本文利用分子动力学模拟方法研究了含纳米孔洞金属铝在[110]晶向高应变率单轴压缩下弹塑性变形的微观过程. 对比单孔洞和完整单晶的模型, 讨论了多孔金属的应力应变关系及其位错发展规律. 研究结果表明, 对于多孔模型的位错积累过程, 位错密度随应变的增加可大致分为两个线性阶段. 由同一个孔洞生成的位错在相互靠近过程中, 其滑移速度越来越小; 随着位错继续滑移, 源自不同孔洞的位错之间开始交叉相互作用导致应变硬化. 达到流变峰应力之后又由于位错密度增殖速率升高发生软化. 当应变增加到11.8%时, 所有孔洞几乎完全坍缩, 并观察到在此过程中有棱位错生成.  相似文献   

8.
A theoretical model is proposed to describe the physical mechanisms of hardening and softening of nanocrystalline materials during superplastic deformation. According to this model, triple interface junctions are obstacles to glide motion of grain boundary dislocations, which are carriers of grain boundary glide deformation. Transformations of an ensemble of grain boundary dislocations that occur at triple interface junctions bring about the formation of partial dislocations and the local migration of triple junctions. The energy characteristics of these transformations are considered. Pileups of partial dislocations at triple junctions cause hardening and initiate intragrain lattice sliding. When the Burgers vectors of partial dislocations reach a critical value, lattice dislocations are emitted and glide into adjacent grains, thereby smoothing the hardening effect. The local migration of triple interface junctions (caused by grain boundary sliding) and the emission of lattice dislocations bring about softening of a nanocrystalline material. The flow stress is found as a function of the total plastic strain, and the result agrees well with experimental data.  相似文献   

9.
Improved understanding of the plastic deformation of metals during high-strain-rate shock loading is key to predicting their resulting material properties. This paper presents the results of molecular-dynamics simulations which address two fundamental questions related to materials deformation: the stability of supersonic dislocations and the mechanism of nano-twin formation. The results show that aluminium plastically deforms by the subsonic motion of edge dislocations when subjected to applied shear stresses of up to 600?MPa. Although higher applied stresses initially drive transonic dislocations, this motion is transient, and the dislocations decelerate to a sustained subsonic saturation velocity. Slowing of the transonic dislocation is controlled by the interaction with excited Rayleigh waves. 800?MPa marks a critical shear stress at which dislocation glide gives way to nano-twin formation via the homogeneous nucleation of Shockley partial dislocation dipoles. At still higher applied stresses, additional dislocation dipole nucleation produces a mid-stacking fault transformation of the twinned material.  相似文献   

10.
11.
A theoretical model is proposed for lattice dislocation nucleation in deformed nanocrystalline ceramics with amorphous intergrain boundaries. According to the model, a lattice dislocation dipole nucleates at an amorphous intergrain boundary through a local plastic shear along the boundary cross section. The energy parameters of this nucleation process are calculated. It is demonstrated that the dislocation nucleation at amorphous intergrain boundaries is energetically favorable and can occur as an athermic process (without energy barrier) in the nanocrystalline phase of cubic silicon carbide 3C-SiC and in the TiN/a-Si3N4 nanocomposite over wide ranges of structural parameters and mechanical loads.  相似文献   

12.
Analyses are reviewed where plastic flow in the vicinity of an interfacial crack is represented in terms of the nucleation and glide of discrete dislocations. Attention is confined to cracks along a metal-ceramic interface, with the ceramic idealized as being rigid. Both monotonic and fatigue loading are considered. The main focus is on the stress and deformation fields near the crack tip predicted by discrete dislocation plasticity, in comparison with those obtained from conventional continuum plasticity theory. The role that discrete dislocation plasticity can play in interpreting interface fracture properties in the presence of plastic flow is discussed.  相似文献   

13.
To study the nanoscopic interaction between edge dislocations and a phase boundary within a two-phase microstructure the effect of the phase contrast on the internal stress field due to the dislocations needs to be taken into account. For this purpose a 2D semi-discrete model is proposed in this paper. It consists of two distinct phases, each with its specific material properties, separated by a fully coherent and non-damaging phase boundary. Each phase is modelled as a continuum enriched with a Peierls–Nabarro (PN) dislocation region, confining dislocation motion to a discrete plane, the glide plane. In this paper, a single glide plane perpendicular to and continuous across the phase boundary is considered. Along the glide plane bulk induced shear tractions are balanced by glide plane shear tractions based on the classical PN model. The model's ability to capture dislocation obstruction at phase boundaries, dislocation pile-ups and dislocation transmission is studied. Results show that the phase contrast in material properties (e.g. elastic stiffness, glide plane properties) alone creates a barrier to the motion of dislocations from a soft to a hard phase. The proposed model accounts for the interplay between dislocations, external boundaries and phase boundary and thus represents a suitable tool for studying edge dislocation–phase boundary interaction in two-phase microstructures.  相似文献   

14.
Dislocation climb mobilities, assuming vacancy bulk diffusion, are derived and implemented in dislocation dynamics simulations to study the coarsening of vacancy prismatic loops in fcc metals. When loops cannot glide, comparison of the simulations with a coarsening model based on the line tension approximation shows good agreement. Dislocation dynamics simulations with both glide and climb are then performed. Allowing for glide of the loops along their prismatic cylinders leads to faster coarsening kinetics, as direct coalescence of the loops is now possible.  相似文献   

15.
When lithium-ion batteries serve in extreme environments like space, severe irradiation might induce significant decay of the electrochemical performances and mechanical properties. In this paper, an electrochemical-irradiated constitutive model is proposed to explore the evolution of dislocation, defect and stress in electrodes during a two-phase lithiation process. The results from the analytic formulation and finite difference calculations show that, as Li intercalation proceeding, the hoop stress in the surface of a spherical particle converts from compression into tension because the large lithiation strain and plastic yielding at the front pushes out the material behind it. And the plastic flow resistance continuously increases with increasing irradiation dose result from the impediment of a defect to dislocation glide. There is a clear peak in the distribution of stress at yielding locations due to the competition between dislocations multiplication and defects annihilation. The model is meaningful for thoroughly understanding the micro-mechanism of lithiation deformation and provides a guideline for predicting their mechanical behaviours of lithium-ion batteries in unconventional environment.  相似文献   

16.
17.
We derive here for the first time the equations that describe the combined motion and rotation of small prismatic dislocation loops in stress fields. When the applied torque is balanced by the self-torque of the loop, we show how the solution can be obtained for the loop orientation, and how this orientation affects the glide force on the loop.  相似文献   

18.
A three-dimensional eigenfunction expansion technique, based in part on separation of the thickness variable and partly utilizing a modified Frobenius-type series expansion in conjunction with the Eshelby–Stroh formalism, is used to compute the local stress singularity, in the vicinity of a kinked fibre/matrix trimaterial junction front, representing a measure of the degree of inherent flaw sensitivity of unidirectional carbon-fibre-reinforced composites under compression. Micro-kinking, more prominent in the misaligned regions of carbon fibres, is caused by crystallite disorientations, as detected by the Raman and X-ray measurements, as well as dislocation glide in crystallites and intra/intercrystallite disorders. The present analysis explains the test results relating to propagation of failure from such discontinuities in a unidirectional composite under compression. Numerical results presented include the effect of fibre wedge aperture angle on the strengths of the mode I and mode II singularities. Of special practical interest is the comparison of the inherent flaw sensitivity of carbon/epoxy and glass/epoxy composites, because improvement of the compressive strength and kink toughness was earlier accomplished through commingling of highly anisotropic (and crystalline) carbon and isotropic (and amorphous) glass fibres at the tow level. Compression fracture of these composites can be fully explained and quantified by the present three-dimensional linear elastic stress singularity analysis-based method. Finally, numerical results, pertaining to the through-thickness variation of ‘stress intensity factor’ for symmetric uniform load and its skew-symmetric counterpart that also satisfies the boundary conditions on the top and bottom surfaces of a compressed composite monolayer, in the vicinity of a trimaterial junction front, are also presented.  相似文献   

19.
We report that kink motion is a universal plastic deformation mode in all carbon nanotubes when being tensile loaded at high temperatures. The kink motion, observed inside a high-resolution transmission electron microscope, is reminiscent of dislocation motion in crystalline materials: namely, it dissociates and multiplies. The kinks are nucleated from vacancy creation and aggregation, and propagate in either a longitudinal or a spiral path along the nanotube walls. The kink motion is related to dislocation glide and climb influenced by external stress and high temperatures in carbon nanotubes.  相似文献   

20.
M. Yu. Gutkin 《哲学杂志》2013,93(11):1483-1511
A theoretical model is suggested which describes the generation of lattice perfect, lattice partial and grain boundary dislocation loops (DLs) at pre-existent DLs in mechanically loaded nanocrystalline materials (NCMs). The energy characteristics of various modes of the DL generation are calculated and compared. With these calculations and comparison, the two basic ranges of the grain size in NCMs are revealed each is characterized by its specific set of effectively operating modes of the DL generation and plastic deformation. The role of the DL generation in plastic and superplastic deformation processes in NCMs is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号