首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two new transition metal dicyanamide complexes [Co2(tppz)(dca)4]·CH3CN ( 1 ) [tppz=tetra(2‐pyridyl)pyrazine, dca=dicyanamide] and [Co(tptz)(dca)(H2O)](dca) ( 2 ) [tptz=2,4,6‐tri(2‐pyridyl)‐1,3,5‐triazine] were synthesized and characterized by single crystal X‐ray diffraction analysis. In 1 each cobalt(II) atom is coordinated to three dca anions and one tppz molecule to form a distorted octahedral geometry, the neigbour two cobalt(II) atoms are bridged by one tppz ligand to form a dimer, then the cobalt(II) atoms in each dimer are joined together to form a ladder chain structure. In 2 the coordination geometry around the central metal is also distorted octahedral, each cobalt(II) atom is coordinated by two dca anions, one tptz molecule and one water ligand to form a cationic part, and the cationic part is linked with the free dca anions via the electrostatic attraction to give an infinite chain structure. Magnetic susceptibility measurement in the range of 2–300 K indicates that there are antiferromagnetic couplings between adjacent metal ions in 1 (T>29 K, (=?9.78 K, C=4.92 cm3·K·mol?1) and ferromagnetic couplings in 2 (T>150 K, (=7.97 K, C=2.59 cm3·K·mol?1) respectively.  相似文献   

2.
Monomeric and Polymeric Dimethylaminothiosquarato Complexes: The Crystal Structures of Nickel(II), Cobalt(II), Silver(I), Platinum(II), Gold(I), Mercury(II) and Lead(II) Dimethylaminothiosquarates The ligand 2‐dimethylamino‐3, 4‐dioxo‐cyclobut‐1‐en‐thiolate, Me2N‐C4O2S (L) forms neutral and anionic complexes with nickel(II), cobalt(II)‐, silver(I)‐, platinum(II)‐, gold(I)‐, mercury(II)‐ and lead(II). According to the crystal structures of seven complexes the ligand is O, S‐chelating in [Ni(L)2(H2O)2]·2 H2O, [Co(L)2(CH3OH)2] and (with limitations) in [Pb(L)2·DMF]. In the remaining compounds the ligand behaves essentially as a thiolate ligand. The platinum, gold and mercury complexes [TMA]2[Pt(L)4], [TMA] [Au(L)2] and [Hg(L)2] are monomeric. In [TMA][Ag2(L)3]·5.5 H2O a chain‐like structure was found. In the asymmetric unit of this structure eight silver ions, with mutual distances in the range 2.8949(4) to 3.1660(3)Å, are coordinated by twelve thiosquarato ligands. [Pb(L)2·DMF] has also a polymeric structure. It contains a core of edge‐bridged, irregular PbS4 polyhedra. TMA[Au(H2NC4O2S)2] has also been prepared and its structure elucidated.  相似文献   

3.
The title complex, [PdCl2(C20H20N2)]·CH3CN, was synthesized by the reaction of 2‐[(2,6‐diethylphenyl)iminomethyl]quinoline with dichlorido(cycloocta‐1,5‐diene)palladium(II) in dry CH2Cl2. The PdII ion is coordinated by two N atoms of the bidentate quinoline ligand and by two chloride anions, generating a distorted square‐planar coordination geometry around the metal centre. There is a detectable trans influence for the chloride ligands. The crystal packing is characterized by π–π stacking between the quinoline rings. The use of acetonitrile as the crystallization solvent was essential for obtaining good‐quality crystals.  相似文献   

4.
The title imino–phosphine compound, [PdCl2(C26H22NP)]·CH3CN, was prepared by reaction of N‐[2‐(diphenylphosphanyl)benzylidene]‐2‐methylaniline with dichlorido(cycloocta‐1,5‐diene)palladium(II) in dry CH2Cl2. The PdII cation is coordinated by the P and N atoms of the bidentate chelating ligand and by two chloride anions, generating a distorted square‐planar coordination geometry. There is a detectable trans influence for the chloride ligands. The methyl group present in this structure has an influence on the crystal packing.  相似文献   

5.
The unsymmetric precursor ethyl 6-acetylpyridine-2-carboxylate (4) was synthesized from 2,6-dimethylpyridine (1). On the basis of this precursor, a new mono(imino)pyridine ligand (5) and the corresponding Co(Ⅱ) complex {2-carbethoxy-6-[1-[(2,6-diethylphenyl)imino]ethyl]pyridine}CoCl2 (6) were prepared. The crystal structure of complex indicates that the 2-carbethoxy-6-iminopyridine is coordinated to the cobalt as a tridentate ligand using [N, N, O] atoms, and the coordination geometry of the central cobalt is a distorted trigonal bipyramid, with the pyridyl nitrogen atom and the two chlorine atoms forming the equatorial plane. Being applied to the ethylene oligomedzation, this cobalt complex shows catalytic activity of 1.820× 10^4 g/mol-Cooh at 101325 Pa of ethylene at 15.5℃ for 1 h, when 1000 equiv, of methylaluminoxane (MAO) is employed as the cocatalyst.  相似文献   

6.
Silver(I) salts of weakly coordinating anions (WCA) are commonly applied as oxidizing agents or halide abstracting reagents. The feasibility of a particular silver salt for such applications strongly depends on the “nakedness“ of the silver cation. In this study the reactivity of Ag[Me3NB12Cl11] in different solvents was investigated. Crystal structures of a variety of complexes were obtained. In several crystal structures two boron clusters are bridged by Ag–Cl contacts. This leads to polymeric structures (e.g. for Ag[Me3NB12Cl11]·0.5CH2Cl2 and Ag[Me3NB12Cl11]·SO2). Sterically demanding aromatics like mesitylene, pyrene, and acenaphthene are η1‐ or η2‐bonded to the silver atom and also form coordination polymers, whereas benzene as a ligand leads to a molecular structure, in which two benzene molecules are η2‐coordinated to the silver cation. In contrast, strong σ donor ligands like pyridine and triphenylphosphine give homoleptic silver complexes and thus cation and anion are separated. Furthermore, the ability of Ag[Me3NB12Cl11] for performing metathesis reactions was investigated. The reaction with AuICl gave the [Au(NCMe)2]+ cation.  相似文献   

7.
4′‐Cyanophenyl‐2,2′:6′,2′′‐terpyridine (cptpy) was employed as an N,N′,N′′‐tridentate ligand to synthesize the compounds bis[4′‐(4‐cyanophenyl)‐2,2′:6′,2′′‐terpyridine]cobalt(II) bis(tetrafluoridoborate) nitromethane solvate, [CoII(C22H14N4)2](BF4)2·CH3NO2, (I), and bis[4′‐(4‐cyanophenyl)‐2,2′:6′,2′′‐terpyridine]cobalt(III) tris(tetrafluoridoborate) nitromethane sesquisolvate, [CoIII(C22H14N4)2](BF4)3·1.5CH3NO2, (II). In both complexes, the cobalt ions occupy a distorted octahedral geometry with two cptpy ligands in a meridional configuration. A greater distortion from octahedral geometry is observed in (I), which indicates a different steric consequence of the constrained ligand bite on the CoII and CoIII ions. The crystal structure of (I) features an interlocked sheet motif, which differs from the one‐dimensional chain packing style present in (II). The lower dimensionality in (II) can be explained by the disturbance caused by the larger number of anions and solvent molecules involved in the crystal structure of (II). All atoms in (I) are on general positions, and the F atoms of one BF4 anion are disordered. In (II), one B atom is on an inversion center, necessitating disorder of the four attached F atoms, another B atom is on a twofold axis with ordered F atoms, and the C and N atoms of one nitromethane solvent molecule are on a twofold axis, causing disorder of the methyl H atoms. This relatively uncommon study of analogous CoII and CoIII complexes provides a better understanding of the effects of different oxidation states on coordination geometry and crystal packing.  相似文献   

8.
Dinuclear Palladium(II), Platinum(II), and Iridium(III) Complexes of Bis[imidazol‐4‐yl]alkanes The reaction of bis(1,1′‐triphenylmethyl‐imidazol‐4‐yl) alkanes ((CH2)n bridged imidazoles L(CH2)nL, n = 3–6) with chloro bridged complexes [R3P(Cl)M(μ‐Cl)M(Cl)PR3] (M = Pd, Pt; R = Et, Pr, Bu) affords the dinuclear compounds [Cl2(R3P)M–L(CH2)nL–M(PR3)Cl2] 1 – 17 . The structures of [Cl2(Et3P)Pd–L(CH2)3L–Pd(PEt3)Cl2] ( 1 ), [Cl2(Bu3P)Pd–L(CH2)4L–Pd(PBu3)Cl2] ( 10 ), [Cl2(Et3P)Pd–L(CH2)5L–Pd(PEt3)Cl2] ( 3 ), [Cl2(Et3P)Pt–L(CH2)3L–Pt(PEt3)Cl2] ( 13 ) with trans Cl–M–Cl groups were determined by X‐ray diffraction. Similarly the complexes [Cl2(Cp*)Ir–L(CH2)nL–Ir(Cp*)Cl2] (n = 4–6) are obtained from [Cp*(Cl)Ir(μ‐Cl)2Ir(Cl)Cp*] and the methylene bridged bis(imidazoles).  相似文献   

9.
Metal-mediated condensation of o-phenylenediamine with bisacetylacetone-ethylenediimine yields 14-membered tetraaza macrocyclic six-coordinate complexes of the type [M(mac)Cl2],[M(mac)SO4·H2O] (where M = FeII, CoII and CuII; MAC = macrocyclic ligand formed in the template reaction). The metal ions are coordinated by four azomethine nitrogen atoms bridged by acetylacetone moieties. The electrical conductance magnetic moments, electronic and IR spectral data of all complexes are discussed.  相似文献   

10.
Reduction of 2‐cyanopyridine by sodium in the presence of 3‐hexamethyleneiminylthiosemicarbazide produces 2‐pyridineformamide 3‐hexamethyleneiminylthiosemicarbazone, HAmhexim. Complexes with nickel(II), copper(II) and palladium(II) have been prepared and the following complexes structurally characterized: [Ni(Amhexim)OAc], [{Cu(Amhexim)}2C4H4O4]·2DMSO·H2O, [Cu(HAmhexim)Cl2] and [Pd(Amhexim)Cl]. Coordination is via the pyridyl nitrogen, imine nitrogen and thiolato or thione sulfur atom when coordinating as the anionic or neutral ligand, respectively. [{Cu(Amhexim)}2C4H4O4] is a binuclear complex with the two copper(II) ions bridged by the succinato group in [Cu‐(HAmhexim)Cl2] the Cu atom is 5‐coordinate and close to a square pyramid structure and in [Ni(Amhexim)OAc] and [Pd(Amhexim)Cl] the metal atoms are planar, 4‐coordinate.  相似文献   

11.
The abstraction of the halogenide ligands in [Re(CH3CN)2Cl4]? should result in a solvent‐only stabilized ReIII complex. The reactions of salts of [Re(CH3CN)2Cl4]? with silver(I) and thallium(I) salts were investigated and the solid‐state structures of cis‐[Re(CH3CN)2Cl4]·CH3CN and cis‐[Re(NHC(OCH3)CH3)2Cl4] are described.  相似文献   

12.
[Hg(sulfamethoxazolato)2]·2DMSO ( 1 ) and [Cu2(CH3COO)4(sulfa‐methoxazole)2] ( 2 ) can be obtained by the reaction of sulfamethoxazole with mercury acetate or copper acetate in methanol. The structures of the two complexes were characterized by single crystal X—ray diffractometry. Compound 1 consists of sulfamethoxazolato ligands bridging the metal ions building an unidimensional chain. Two solvent dimethylsulfoxide molecules are involved via N‐H···O hydrogen bridges. The mercury atom shows a linear primary coordination arrangement formed by two trans deprotonated sulfonamidic nitrogen atoms. The overall coordination around the metal atom may be regarded as a strongly distorted octahedron when the interactions of mercury with four sulfonamidic oxygen atoms [bond distances of 2.761(4) Å—2.971(4) Å] are also considered to build an equatorial plane and the N1 and N1′ atoms [bond distance of 2.037(5) Å] occupy the apical positions. Compound 2 is a dinuclear complex in which the copper ions are bridged by four syn‐syn acetate ligands which are related by a symmetry centre located in the centre of the complex. Each copper atom presents a nearly octahedral coordination where the equatorial plane is formed by four oxygen atoms and an isoxazolic nitrogen atom and the second copper atom occupy the apical positions.  相似文献   

13.
The crystal structure of the title compound, tetra­chloro­[μ‐1,1,4,7,7‐pentakis(1H‐benzimidazol‐2‐yl­methyl)‐1,4,7‐tri­azaheptane]­dimanganese(II) methanol pentasolvate tetrahydrate, [Mn2Cl4(C44H43N13)]·5CH4O·4H2O, contains an ­asymmetric dinuclear MnII–DTPB [DTPB is 1,1,4,7,7‐pentakis(1H‐benzimidazol‐2‐yl­methyl)‐1,4,7‐tri­aza­heptane] complex with an intra‐ligand bridging group (–NCH2CH2N–), as well as several solvate mol­ecules (methanol and water). Both MnII cations have similar distorted octahedral coordination geometries. One MnII cation is coordinated by a Cl anion and five N atoms from the ligand, and the other is coordinated by three Cl anions and three N atoms of the same ligand. The Mn⋯Mn distance is 7.94 Å. A Cl⋯H—O⋯H—O⋯H—N hydrogen‐bond chain is also observed, connecting the two parts of the complex.  相似文献   

14.
The triply chloro-bridged binuclear complexes [Ph3X=O···H···O=XPh3][Ru2Cl7(XPh3)2]·0.5(CH2Cl2)(H2O) (X = As or P) were obtained from [RuCl3(XPh3)2DMA]·DMA (DMA = dimethylacetamide) CH2Cl2/Et2O solution. The structures were characterized by X-ray diffraction studies. The complexes are formed from two Ru atoms bridged by three chloride anions. The two ruthenium atoms are also coordinated to two non-bridging Cl atoms and an AsPh3 or PPh3 ligand respectively. As an interesting feature, the cations of these complexes are protons, trapped in a very short hydrogen bond between two triphenylarsine or triphenylphosphine oxide molecules.  相似文献   

15.
Three palladium (II) complexes with the isonitrosobenzoylacetoneimine (HIBI) ligand, Pd (p‐CH3C6H4IBI)2 (1), Pd (C6H5IBI)2 (2) and Pd2Cl2 (C6H5CH2IBI)2 · CHCl3 (3), were prepared and characterized by IR, Raman and X‐ray diffraction studies. The geometries around the palladium atoms in the complexes 1 and 2 are distorted trans‐PdN4 square planes, and the Schiff base ligands RIBI? are coordinated through their oximo‐nitrogen atoms and imino‐nitrogen atoms. The week Pd…H? C agostic interactions [Pd…H = 0.2764 nm] complete the hexacoordinate environment around palladium in the complex 1. The octahedral deformation of the classical square planar environment of the Pd atom is due to the week Pd…O (1b) interactions [Pd? O (1b) = 0.3157 (9) nm] in the complex 2. The complex 3 is a first example of binuclear complex with isonitrosoketoimine ligands, in which one of oximo groups is coordinated through oximo‐nitrogen and oximo‐oxygen atoms.  相似文献   

16.
Four new diethyltin N‐[(2‐oxyphenyl)methylene]phenylalaninates, (CH3CH2)2Sn[2‐O‐3‐X‐5‐YC6H2CH?NCH(CH2Ph)COO] (X, Y = H, H, 1 ; H, Br, 2 ; H, OCH3, 3 ; Br, Br, 4 ), have been synthesized and characterized using elemental analysis and infrared and NMR (1H, 13C and 119Sn) spectra. The crystal structures of 1 , 2 , 3 , 4 have been determined. Compounds 1 and 2 have a 12‐membered macrocyclic structure with a trimeric [Sn3O6C3] core. Each tin atom is six‐coordinated in distorted [SnC2NO3] octahedral geometry. Compound 3 is a centrosymmetric weak dimer in which the two tin centers are linked by two asymmetric Sn? O???Sn bridges involving the phenolic oxygen of the ligand and two Sn???O interactions from ether oxygen of the adjacent ligand. The coordination geometry of the tin atom can be described as a distorted pentagonal bipyramid with two ethyl groups in axial positions. Compound 4 is a novel binuclear tin complex, formed by the carboxylate of a ligand asymmetrically bridging two tin atoms, which contains a five‐coordinated tin and a six‐coordinated tin. Bioassay results have shown that the compounds have weak in vitro activity against two human tumor cell lines, A549 and CoLo205. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
The molecular structures of blue dichloro‐tetrakis(acrylamide) cobalt(II), [Co{O‐OC(NH2)CH=CH2}4Cl2] ( 1 ) and pink hexakis(acrylamide)cobalt(II) tetrachlorocobaltate(II), [Co{O‐OC‐(NH2)CH=CH2}6][CoCl4] ( 2 ), characterized by single X‐ray diffraction, IR spectroscopy and elemental analyses, are described. The coordination of CoII in 1 involves a tetragonally distorted octahedral structure with four O‐donor atoms of acrylamide in the equatorial positions and two chloride ions in the apical positions. The second complex 2 in ionic form contains CoII cations surrounded by an octahedral array of O‐coordinated acrylamide ligands, accompanied by a [CoCl4]2? anion.  相似文献   

18.
The 18‐membered mixed‐donor macrocycle 6,7,8,9,10,11,12,13,20,21‐decahydro‐5H, 19H‐dibenzo[b,m][1,15,5,8,11]dioxatriazacyclooctadecin‐20‐ol ( L ), which contains N3O3 donor set, was synthesized. Also two nickel(II) complexes of L have been synthesized and characterized by X‐ray crystallography, FT‐IR, UV‐Vis absorption spectroscopy and elemental analysis. The structure of complexes shows an unexpected anion dependence. Reaction of Ni(ClO4)2·6H2O with L afforded [Ni L ](ClO4)2·CH2Cl2 complex in which L uses all donor atoms and acts as a hexadentate ligand so forming a mononuclear nickel(II) complex in distorted octahedral geometry. Contrasting with this, when NiCl2·6H20 is used, the product complex [{Ni L Cl}2(μ‐Cl)2] is dimeric and consists of two Ni L Cl units bridged by two chloride ions. The coordination geometry of each nickel atom is a distorted octahedral. In this complex L is exo‐coordinated via only three nitrogen atoms to a nickel ion, which is bound to two cis bridging chloride and one non‐bridging chloride too. Also complexing properties of L towards Ni(ClO4)2·6H2O and NiCl2·6H20 have been determined by UV‐Vis titration in methanol. The computer treatment of the data confirmed the 1:1 metal to ligand stoichiometry for two complexes in solution and gave reliable values for corresponding stability constants (logK = 3.00 ± 0.02 with Ni(ClO4)2·6H2O and logK = 3.29 ± 0.06 with NiCl2·6H20).  相似文献   

19.
Six new triorganotin complexes ( 1a – 1c and 2a – 2c ) of 5‐(salicylideneamino)salicylic acid, [5‐(3‐X‐2‐HOC6H3CH═N)‐2‐HOC6H3COO]SnR3 (X = H, 1 ; CH3O, 2 ; R = Ph, a ; Cy, b ; CH2C(CH3)2Ph, c ), have been synthesized by one‐pot reaction of 5‐aminosalicylic acid, salicylaldehyde and triorganotin hydroxide and characterized using elemental analysis and infrared and NMR (1H, 13C and 119Sn) spectra. The crystal structures of 1a , 1b , 2a ·CH3OH, 2b ·CH3OH and 2c ·CHCl3 have been determined using single‐crystal X‐ray diffraction. In non‐coordinated solvent CDCl3, the tin atoms in the complexes are all four‐coordinated. In the crystalline state, these compounds adopt a four‐ or five‐coordination mode. Complex 1a exhibits a 44‐membered macrocyclic tetrameric structure with trigonal bipyramidal geometry around the tin atoms in which the axial positions are occupied by the oxygen atom of carboxylate group of the ligand and the phenolic oxygen atom from the adjacent ligand. The coordination geometry of tin atom in 1b and 2c ·CHCl3 is a distorted tetrahedron shaped by three carbon atoms of alkyl groups and a carboxylate oxygen atom of the ligand. In 2a ·CH3OH and 2b ·CH3OH, the tin atom has a distorted trans‐C3SnO2 trigonal bipyramidal geometry formed by three alkyl groups, a monodentate carboxylate group and a coordinated methanol molecule. The molecules of 2a ·CH3OH and 2b ·CH3OH are linked via O─H···O hydrogen bonds into a one‐dimensional supramolecular chain and a centrosymmetric R44(22) macrocycle, respectively. Bioassay results against two human tumor cell types (A549 and HeLa) show the complexes are efficient cytostatic agents and may be explored as potential antitumor drugs.  相似文献   

20.
The reaction of [SnMe2Cl2] with the bidentate ligand 4,7‐phenanthroline (4,7‐phen) resulted in the formation of [SnMe2Cl2 (4,7‐phen)]n ( 1a ) which is probably a polymeric chain in solution. On the other hand, the reaction of [SnEt2Cl2] with 4,7‐phen afforded the complex [Sn2Et4Cl41‐N‐4,7‐phen)2(μ‐κ2‐N,N‐4,7‐phen)] ( 1b ) which dissociates in dimethylsulfoxide solution. The reaction of [SnR2Cl2] (R = Me, Et) with 2,2′‐biquinoline (biq) yielded the complexes [SnMe2Cl22‐N,N‐biq)] ( 2a ) and [SnEt2Cl21‐N‐biq)2] ( 2b ) in the solid state. Moreover, the reaction of [SnR2Cl2] (R = Me, Et) with the tridentate ligand 4′‐(2‐furyl)‐2,2′:6′,2″‐terpyridine (ftpy) resulted in the formation of ionic penta‐ and hexa‐coordinated tin complexes [SnMe2Cl (ftpy)][SnMe2Cl3] ( 3a ) and [SnEt2Cl (ftpy)]Cl ( 3b ). The reaction of [SnMe2 (NCS)2] with ftpy afforded the hepta‐coordinated complex [SnMe2 (NCS)2(ftpy)] ( 4a ). The products were fully characterized using elemental analysis, and infrared, UV–visible, multinuclear (1H, 13C, 119Sn) NMR, DEPT‐135°, HH‐COSY and HSQC NMR spectroscopies. The crystal structure of complex 3a reveals that it contains the simultaneous presence of penta‐ and hexa‐coordinated tin (IV) atoms. Notably, the crystal structure of complex 4a shows that tin (IV) is hepta‐coordinated in a pentagonal bipyramidal geometry SnC2N5 by three nitrogen atoms of ftpy, two nitrogen atoms of NCS? and two Me groups with trans‐[SnMe2] configuration. These data indicate the influence of halide or pseudo‐halide group on the coordination number and geometry of tin. Hirshfeld surface analysis and two‐dimensional fingerprint plots were calculated for 3a and 4a which show the π–π interaction between molecules in the solid is relatively weak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号