首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two bicyclic 2'-deoxynucleoside analogues containing a saturated and an unsaturated three-carbon 2',4'-linkage, respectively, have been synthesized using a ring-closing metathesis-based linear strategy starting from uridine. Both analogues have been incorporated into oligodeoxynucleotide sequences and increased the stability of DNA:RNA hybrid duplexes (DeltaT(m) approximately 2.5-5.0 degrees C per modification) and decreased the stability of dsDNA duplexes (DeltaT(m) approximately 2.5-1.0 degrees C per modification). CD spectroscopy revealed that the bicyclic nucleosides induced formation of A-type-like duplexes albeit to a lesser degree than found for locked nucleic acid (LNA) monomers. From the CD data and UV melting analysis, we propose that the 2'-oxygen atom of the bicyclic moiety is essential for the formation of stabilized A-type-like dsDNA but not for the formation of a stabilized A-type DNA:RNA hybrid.  相似文献   

2.
Chimeric 2'-O-methyl oligoribonucleotides (2'-OMe ORNs) containing internucleotide linkages which were modified with phosphonoacetate (PACE) or thiophosphonoacetate (thioPACE) were prepared by solid-phase synthesis. The modified 2'-OMe ORNs contained a central phosphate or phosphorothioate sequence with up to 4 PACE or thioPACE modifications, respectively, at either end of the ORN in a "gapmer" motif. Both PACE and thioPACE 2'-OMe ORNs formed stable duplexes with complementary RNA. The majority of these duplexes had higher thermal melting temperatures than an unmodified RNA:RNA duplex. The modified 2'-OMe ORNs were effective passenger strands with complementary, unmodified siRNAs, for inducing siRNA activity in a dual luciferase assay in the presence of a lipid transfecting agent. As single strands, thioPACE 2'-OMe ORNs were efficiently taken up by HeLa cells in the absence of a lipid transfecting agent. Furthermore, thioPACE modifications greatly improved the potency of a 2'-OMe phosphorothioate ORN as an inhibitor of microRNA-122 in Huh7 cells, without lipid transfection.  相似文献   

3.
The 2'-OH group has major structural implications in the recognition, processing, and catalytic properties of RNA. We report here intra- and intermolecular H-bonding of 2'-OH in adenosine 3'-ethyl phosphate (1), 3'-deoxyadenosine (2), and adenosine (3) by both temperature- and concentration-dependent NMR studies, as well as by detailed endo ((3)J(H,H)) and exocyclic ((3)J(H,OH)) coupling constant analyses. We have also examined the nature of hydration and exchange processes of 2'-OH with water by a combination of NOESY and ROESY experiments in DMSO-d(6) containing 2 mol % HOD. The NMR-constrained molecular modeling (by molecular mechanics as well as by ab initio methods both in the gas and solution phase) has been used to characterize the energy minima among the four alternative dihedrals possible from the solution of the Karplus equation for (3)J(H2',OH) and (3)J(H3',OH) to delineate the preferred orientation of 2'-O-H proton in 1 and 2 as well as for 2'/3'-O-H protons in 3. The NMR line shape analysis of 2'-OH gave the DeltaG(H-bond)(298K) of 7.5 kJ mol(-1) for 1 and 8.4 kJ mol(-1) for 3; similar analyses of the methylene protons of 3'-ethyl phosphate moiety in 1 also gave comparable DeltaG(H-bond)(298K) of 7.3 kJ mol(-1). The donor nature of the 2'-OH in the intramolecular H-bonding in 3 is evident from its relatively reduced flexibility [-TDeltaS++](2'-OH) = -17.9(+/-0.5) kJ mol(-1)] because of the loss of conformational freedom owing to the intramolecular 2'O-H...O3' H-bonding, compared to the acceptor 3'-OH in 3 [-TDeltaS++](3'-OH) = -19.8 (+/- 0.6) kJ mol(-1)] at 298 K. The presence of intramolecular 2'-OH...O3' H-bonding in 3 is also corroborated by the existence of weak long-range (4)J(H2',OH3') in 3 (i.e., W conformation of H2'-C2'-C3'-O3'-H) as well as by (3)J(H,OH) dependent orientation of the 2'- and 3'-OH groups. The ROESY spectra for 1 and 3 at 308 K, in DMSO-d(6), show a clear positive ROE contact of both 2'- and 3'-OH with water. The presence of a hydrophilic 3'-phosphate group in 1 causes a much higher water activity in the vicinity of its 2'-OH, which in turn causes the 2'-OH to exchange faster, culminating in a shorter exchange lifetime (tau) for 2'-OH proton with HOD in 1 (tau2'-OH: 489 ms) compared to that in 3 (tau2'-OH: 6897 ms). The activation energy (E(a)) of the exchange with the bound-water for 2'- and 3'-OH in 3 (48.3 and 45.0 kJ mol(-1), respectively) is higher compared to that of 2'-OH in 1 (31.9 kJ mol(-1)), thereby showing that the kinetic availability of hydrated 2'-OH in 1 for any inter- and intramolecular interactions, in general, is owing to the vicinal 3'-phosphate residue. It also suggests that 2'-OH in native RNA can mediate other inter- or intramolecular interactions only in competition with the bound-water, depending upon the specific chemical nature and spatial orientation of other functions with potential for hydrogen bonding in the neighborhood. This availability of the bound water around 2'-OH in RNA would, however, be dictated by whether the vicinal phosphate is exposed to the bulk water or not. This implies that relatively poor hydration around a specific 2'-OH across a polyribonucleotide chain, owing to some hydrophobic microenvironmental pocket around that hydroxyl, may make it more accessible to interact with other donor or acceptor functions for H-bonding interactions, which might then cause the RNA to fold in a specific manner generating a new motif leading to specific recognition and function. Alternatively, a differential hydration of a specific 2'-OH may modulate its nucleophilicity to undergo stereospecific transesterification reaction as encountered in ubiquitous splicing of pre-mRNA to processed RNA or RNA catalysis, in general.  相似文献   

4.
The ribose 2'-OH hydroxyl group distinguishes RNA from DNA. The 2'-OH hydroxyl protons are responsible for differences in conformation, hydration, and thermodynamic stability of RNA and DNA oligonucleotides. Additionally, the 2'-OH group plays a central role in RNA catalysis. This important group lies in the shallow groove of RNA, where it is involved in a network of hydrogen bonds with water molecules stabilizing RNA A-form duplexes. Structural and dynamical information on 2'-OH hydroxyl protons is essential to understand their respective roles. Here we report the 2'-OH hydroxyl proton assignments for a 30mer RNA, the HIV-2 transactivation region, in water using solution NMR techniques. We provide structural information on 2'-OH hydroxyl groups in the form of orientational preferences contradicting the paradigm that the 2'-OH hydroxyl typically points away from the ribose H1' proton.  相似文献   

5.
Novel Oligodeoxynucleotide analogues containing 3′-C-threo-methylene phosphodiester internucleoside linkages were synthesized on automated DNA-synthesizers using the phosphoramidite approach. The sugar modified phosphoramidite building block 5 was obtained by phosphitylation of 1-(2,3-dideoxy-5-O-(4,4′-dimethoxytrityl)-3-C-hydroxymethyl-β-D-threo-pentofuranosyl)thymine (4) which was synthesized in only three steps from 5′-O-(4,4′-dimethoxytrityl)thymidine (1). The hybridization properties and enzymatic stability of the oligonucleotide analogues were studied by UV experiments. 17-Mers having one or three modifications in the middle or two modifications in each end hybridized to DNA with moderate lowered affinity compared to unmodified 17-mers (ΔTm 1–3°C per modification). Furthermore, the end-modified and all-modified oligonucleotides were stable towards snake venom phosphodiesterase.  相似文献   

6.
Recent discovery of RNA interference has reinvigorated the interest in chemically modified RNA. Chemical approaches may be used to optimize properties of small interfering RNAs, such as thermal stability, cellular delivery, in vivo half-life, and pharmacokinetics. From this perspective, amides as neutral and hydrophobic internucleoside linkages in RNA are highly interesting modifications that so far have not been tested in RNA interference. Amides are remarkably good mimics of the phosphodiester backbone of RNA and can be prepared using a relatively straightforward peptide coupling chemistry. The synthetic challenge that has hampered the progress in this field has been preparation of monomeric building blocks for such couplings, the nucleoside amino acid equivalents. Herein, we report two synthetic routes to enantiomerically pure 3'-aminomethyl-5'-carboxy-3',5'-dideoxy nucleosides, monomers for preparation of amide-modified RNA. Modification of uridine, a representative of natural nucleosides, using nitroaldol chemistry gives the target amino acid in 16 steps and 9% overall yield. The alternative synthesis starting from glucose is somewhat less efficient (17 steps and 6% yield of 3'-azidomethyl-5'-carboxy-3',5'-dideoxy uridine), but provides easier access to modified nucleosides having other heterocyclic bases. The syntheses developed herein will allow preparation of amide-modified RNA analogues and exploration of their potential as tools and probes for RNA interference, fundamental biochemistry, and bio- and nanotechnology.  相似文献   

7.
Hydrolytic reactions of 2',3'-O-methyleneadenosin-5'-yl bis-5'-O-methyluridin-3'-yl phosphate (1a) have been followed by RP HPLC over a wide pH range to elucidate the role of the 2'-OH group as an intermolecular hydrogen bond donor facilitating the cleavage of 1a. At pH < 2, where the decomposition of 1 is first-order in hydronium-ion concentration, the P-O5' and P-O3' bonds are cleaved equally rapidly. Over a relatively wide range from pH 2 to 4, the hydrolysis is pH-independent and the P-O5' bond is cleaved 1.6 times as rapidly as the P-O3' bond. At pH 6, the reaction becomes first-order in hydroxide-ion concentration and cleavage of the P-O3' bond starts to predominate, accounting for 89% of the overall hydrolysis in 10 mmol L(-)(1) aqueous sodium hydroxide. Under alkaline conditions, the 2'-OH group facilitates the cleavage of 1 by a factor of 27 compared to the 2'-OMe counterpart, the influence on the P-O3' and P-O5' bond cleavage being equal. Accordingly, the 2'-hydroxy group stabilizes the phosphorane intermediate, not the departing 3'-oxyanion, by hydrogen bonding.  相似文献   

8.
We have developed new artificial oligonucleotides which distinguish short RNA targets from long ones. The modification of the 5' termini of oligonucleotides by using adenosine derivatives that possess a bulky cyclohexyl phosphate moiety at their base moiety and a phosphate group at the position of their 5'-hydroxyl group maximized their short RNA selectivity. The 2'-O-methyl-RNA (5'-XC(m)A(m)A(m)C(m)C(m)U(m)A(m)C(m)U(m)) having these modifications exhibits ca. 10 °C higher T(m) in the duplexes with the complementary short RNA (3'-GUUGGAUGA-5') than with the long RNA (3'-AUUAUAUGUUGGAUGAUGGUUA-5'). The oligodeoxynucleotides having the same modification exhibited similar selectivity. Such short-RNA selective binding of terminally modified oligonucleotides can be employed to distinguish between mature microRNAs and pre-microRNAs.  相似文献   

9.
The success of RNA interference (RNAi) as a research tool and potential therapeutic approach has reinvigorated interest in chemical modifications of RNA. Replacement of the negatively charged phosphates with neutral amides may be expected to improve bioavailability and cellular uptake of small interfering RNAs (siRNAs) critical for in vivo applications. In this study, we introduced up to seven consecutive amide linkages at the 3′-end of the guide strand of an siRNA duplex. Modified guide strands having four consecutive amide linkages retained high RNAi activity when paired with a passenger strand having one amide modification between its first and second nucleosides at the 5′-end. Further increase in the number of modifications decreased the RNAi activity; however, siRNAs with six and seven amide linkages still showed useful target silencing. While an siRNA duplex having nine amide linkages retained some silencing activity, the partial reduction of the negative charge did not enable passive uptake in HeLa cells. Our results suggest that further chemical modifications, in addition to amide linkages, are needed to enable cellular uptake of siRNAs in the absence of transfection agents.  相似文献   

10.
The synthesis of the ribo(bc-rT)- and arabino(bc-araT)-version of bicyclothymidine (bc-dT) has been achieved. A conformational analysis by X-ray and/or (1)H NMR spectroscopy on the corresponding 3',5'-benzyl-protected nucleosides featured a rigid C(2')-endo conformation for the furanose ring, irrespective of the configuration of the OH group at C(2'). The conformation of the carbocyclic ring in these nucleosides was found to be less defined and thus more flexible. Both nucleosides were converted into the corresponding phosphoramidites and incorporated into oligodeoxynucleotides by standard DNA chemistry. T(m)-data of duplexes with cDNA and RNA revealed that a bc-rT unit strongly destabilized duplexes with cDNA and RNA by 6-8 °C/mod, while bc-araT was almost T(m) neutral. A rationale based on a previous structure of a bc-DNA mini duplex suggests that the strong destabilization caused by a bc-rT unit arises from unfavorable steric interactions of the equatorial 2'-OH group with the sugar residue of the 3'-neighboring nucleotide unit.  相似文献   

11.
First examples of di- and trinucleosides with ribose and xylose stereochemistry having internucleoside ether linkage were synthesized from 3,5'-ether-linked pseudosaccharides. The synthetic protocol involved removal of 1,2-isopropylidene protecting groups from the pseudosaccharides followed by acetylation and a subsequent Vorbruggen transglycosylation with uracil and N-benzoylaminopurine. The synthetic strategy is potentially important for the development of RNA analogues with internucleoside ether linkage.  相似文献   

12.
The 2'-deoxy-2'-N,4'-C-ethylene-bridged thymidine (aza-ENA-T) has been synthesized using a key cyclization step involving 2'-ara-trifluoromethylsufonyl-4'-cyanomethylene 11 to give a pair of 3',5'-bis-OBn-protected diastereomerically pure aza-ENA-Ts (12a and 12b) with the fused piperidino skeleton in the chair conformation, whereas the pentofuranosyl moiety is locked in the North-type conformation (7 degrees < P < 27 degrees, 44 degrees < phi m < 52 degrees). The origin of the chirality of two diastereomerically pure aza-ENA-Ts was found to be due to the endocyclic chiral 2'-nitrogen, which has axial N-H in 12b and equatorial N-H in 12a. The latter is thermodynamically preferred, while the former is kinetically preferred with Ea = 25.4 kcal mol-1, which is thus far the highest observed inversion barrier at pyramidal N-H in the bicyclic amines. The 5'-O-DMTr-aza-ENA-T-3'-phosphoramidite was employed for solid-phase synthesis to give four different singly modified 15-mer antisense oligonucleotides (AONs). Their AON/RNA duplexes showed a Tm increase of 2.5-4 degrees C per modification, depending upon the modification site in the AON. The relative rates of the RNase H1 cleavage of the aza-ENA-T-modified AON/RNA heteroduplexes were very comparable to that of the native counterpart, but the RNA cleavage sites of the modified AON/RNA were found to be very different. The aza-ENA-T modifications also made the AONs very resistant to 3' degradation (stable over 48 h) in the blood serum compared to the unmodified AON (fully degraded in 4 h). Thus, the aza-ENA-T modification in the AON fulfilled three important antisense criteria, compared to the native: (i) improved RNA target affinity, (ii) comparable RNase H cleavage rate, and (iii) higher blood serum stability.  相似文献   

13.
This paper describes a convenient synthetic procedure for nucleoside mimics, 1-6, in which the 3',5'-hydroxy groups of natural 2'-deoxythymidine or 2'-deoxyadenosine are replaced by thiol, amine, or alkylthiol groups. Such nucleosides would be built up into a single DNA strand with cooperative participation of metal coordination, where internucleoside linkages are replaced by metal complexation motifs. The X-ray crystal structure and complexation behaviors of 3',5'-dithiothymidine, 1, with Au(I) are also reported.  相似文献   

14.
We previously used in vitro selection to identify several classes of deoxyribozymes that mediate RNA ligation by attack of a hydroxyl group at a 5'-triphosphate. In these reactions, the nucleophilic hydroxyl group is located at an internal 2'-position of an RNA substrate, leading to 2',5'-branched RNA. To obtain deoxyribozymes that instead create linear 3'-5'-linked (native) RNA, here we strategically modified the selection approach by embedding the nascent ligation junction within an RNA:DNA duplex region. This approach should favor formation of linear rather than branched RNA because the two RNA termini are spatially constrained by Watson-Crick base pairing during the ligation reaction. Furthermore, because native 3'-5' linkages are more stable in a duplex than isomeric non-native 2'-5' linkages, this strategy is predicted to favor the formation of 3'-5' linkages. All of the new deoxyribozymes indeed create only linear 3'-5' RNA, confirming the effectiveness of the rational design. The new deoxyribozymes ligate RNA with k(obs) values up to 0.5 h(-1) at 37 degrees C and 40 mM Mg2+, pH 9.0, with up to 41% yield at 3 h incubation. They require several specific RNA nucleotides on either side of the ligation junction, which may limit their practical generality. These RNA ligase deoxyribozymes are the first that create native 3'-5' RNA linkages, which to date have been highly elusive via other selection approaches.  相似文献   

15.
3'-S-Phosphorothiolate (3'-SP) linkages have been incorporated into the DNA strand of both a DNA.RNA duplex and a DNA.DNA duplex. Thermal melting (T(m)) studies established that this modification significantly stabilises the DNA.RNA duplex with an average increase in T(m) of about 1.4 degrees C per modification. For two or three modifications, the increase in T(m) was larger for an alternating, as compared to the contiguous, arrangement. For more than three modifications their arrangement had no effect on T(m). In contrast to the DNA.RNA duplex, the 3'-S-phosphorothiolate linkage destabilised the DNA.DNA duplex, irrespective of the arrangement of the 3'-SP linkages. The effect of ionic strength on duplex stability was similar for both the phosphorothiolate-substituted and the unmodified RNA.DNA duplexes. The results are discussed in terms of the influence that the sulfur atom has on the conformation of the furanose ring and comparisons are also drawn between the current study and those previously conducted with other modifications that have a similar conformational effect.  相似文献   

16.
Two unusual reactions involving the 5-hexenyl or the 6-heptenyl radical cyclization of a distant double bond at C4' and the radical center at C2' of the ribofuranose ring of thymidine have been used as key steps to synthesize North-type conformationally constrained cis-fused bicyclic five-membered and six-membered carbocyclic analogues of LNA (carbocyclic-LNA-T) and ENA (carbocyclic-ENA-T) in high yields. Their structures have been confirmed unambiguously by long range 1H-13C NMR correlation (HMBC), TOCSY, COSY, and NOE experiments. The carbocyclic-LNA-T and carbocyclic-ENA-T were subsequently incorporated into the antisense oligonucleotides (AONs) to show that they enhance the Tm of the modified AON/RNA heteroduplexes by 3.5-5 degrees C and 1.5 degrees C/modification for carbocyclic-LNA-T and carbocyclic-ENA-T, respectively. Whereas the relative RNase H cleavage rates with carbocyclic-LNA-T, carbocyclic-ENA-T, aza-ENA-T, and LNA-T modified AON/RNA duplexes were found to be very similar to that of the native counterpart, irrespective of the type and the site modification in the AON strand, a single incorporation of carbocyclic-LNA and carbocyclic-ENA into AONs leads to very much more enhanced nuclease stability in the blood serum (stable >48 h) as compared to that of the native (fully degraded <3 h) and the LNA-modified AONs (fully degraded <9 h) and aza-ENA ( approximately 85% stable in 48 h). Clearly, remarkably enhanced lifetimes of these carbocyclic-modified AONs in the blood serum may produce the highly desired pharmacokinetic properties because of their unique stability and consequently a net reduction of the required dosage. This unique quality as well as their efficient use as the AON in the RNase H-promoted cleavage of the target RNA makes our carbocyclic-LNA and carbocyclic-ENA modifications excellent candidates as potential antisense therapeutic agents.  相似文献   

17.
The 1-propynylation at C5 of consecutive pyrimidines in DNA can enhance DNA:RNA hybrid stability at 37 degrees C by over 1 kcal/mol of substitution [Barnes, T. W., III; Turner, D. H. J. Am. Chem. Soc.2001, 123, 4107-4118]. To provide information on the structural consequences of propynylation, two-dimensional NMR spectroscopy was used to study the structures of several oligonucleotides. Intraresidue nuclear Overhauser effect spectroscopy cross peaks were observed at 30 degrees C and a 200 ms mixing time in the H6-H1' region for 5'(dC(P)C(P)U(P)C(P)C(P)U(P)U(P)) (ssPrODN) but not for 5'(dCCUCCUU) (ssODN), suggesting preorganization of the propynylated single strand. NMR structures of the duplexes 5'(dC(P)C(P)U(P)C(P)C(P)U(P)U(P))3':3'(rGAGGAGGAAAU)5' (PrODN:RNA), 5'(dCC(P)U(P)C(P)C(P)U(P)U(P))3':3'(rGAGGAGGAAAU)5' (sPrODN1:RNA), and 5'(dCCUCCUU)3':3'(rGAGGAGGAAAU)5' (ODN:RNA) indicate that their global structures are almost identical. The NMR data, however, suggest that the 5'-end of sPrODN1:RNA is more dynamic than that of PrODN:RNA. In the propynylated duplexes, the propyne group stacks on the aromatic ring of the 5'-base and extends into the major groove. The results suggest that the increased stability of the propynylated duplexes is caused by preorganization of the propynylated single strand and different interactions in the double strand. The propynyl group provides volume exclusion, enhanced stacking, and possibly different solvation.  相似文献   

18.
The first structure of a 2'-deoxy-2'-fluoro-D-arabinose nucleic acid (2'F-ANA)/RNA duplex is presented. We report the structural characterization by NMR spectroscopy of a small hybrid hairpin, r(GGAC)d(TTCG)2'F-a(GTCC), containing a 2'F-ANA/RNA stem and a four-residue DNA loop. Complete (1)H, (13)C, (19)F, and (31)P resonance assignments, scalar coupling constants, and NOE constraints were obtained from homonuclear and heteronuclear 2D spectra. In the chimeric duplex, the RNA strand adopts a classic A-form structure having C3' endo sugar puckers. The 2'F-ANA strand is neither A-form nor B-form and contains O4' endo sugar puckers. This contrasts strongly with the dynamic sugar conformations previously observed in the DNA strands of DNA/RNA hybrid duplexes. Structural parameters for the duplex, such as minor groove width, x-displacement, and inclination, were intermediate between those of A-form and B-form duplexes and similar to those of DNA/RNA duplexes. These results rationalize the enhanced stability of 2'F-ANA/RNA duplexes and their ability to elicit RNase H activity. The results are relevant for the design of new antisense drugs based on sugar-modified nucleic acids.  相似文献   

19.
Ionization of the internucleotidic 2'-hydroxyl group in RNA facilitates transesterification reactions in Group I and II introns (splicing), hammerhead and hairpin ribozymes, self-cleavage in lariat-RNA, and leadzymes and tRNA processing by RNase P RNA, as well as in some RNA cleavage reactions promoted by ribonucleases. Earlier, the pK(a) of 2'-OH in mono- and diribonucleoside (3'-->5') monophosphates had been measured under various nonuniform conditions, which make their comparison difficult. This work overcomes this limitation by measuring the pK(a) values for internucleotidic 2'-OH of eight different diribonucleoside (3'-->5') monophosphates under a set of uniform noninvasive conditions by 1H NMR. Thus the pK(a) is 12.31 (+/-0.02) for ApG and 12.41 (+/-0.04) for ApA, 12.73 (+/-0.04) for GpG and 12.71 (+/-0.08) for GpA, 12.77 (+/-0.03) for CpG and 12.88 (+/-0.02) for CpA, and 12.76 (+/-0.03) for UpG and 12.70 (+/-0.03) for UpA. By comparing the pK(a)s of the respective 2'-OH of monomeric nucleoside 3'-ethyl phosphates with that of internucleotidic 2'-OH in corresponding diribonucleoside (3'-->5') monophosphates, it has been confirmed that the aglycons have no significant effect on the pK(a) values of their 2'-OH under our measurement condition, except for the internucleotidic 2'-OH of 9-adeninyl nucleotide at the 5'-end (ApA and ApG), which is more acidic by 0.3-0.4 pK(a) units.  相似文献   

20.
Antisense oligonucleotides and siRNAs are potential therapeutic agents and their chemical modifications play an important role to improve the properties and activities of oligonucleotides. Isonucleoside is a type of nucleoside analogue, in which the nucleobase is moved from C-1 to other positions of ribose. In this report, a novel isonucleoside containing a 5'-CH(2)-extended chain at the sugar moiety was synthesized, thus isoadenosine and isothymidine were incorporated into a DNA single strand and siRNA. It was found that isonucleoside modified oligonucleotides can form stable double helical structures with their complementary DNA and RNA and the stability towards nuclease and ability to activate RNase H are more promising compared with the unmodified, natural analogues. In siRNA, passenger strand modified with isonucleoside () at 3' or 5' terminal can retain the silencing activity and minimize the passenger strand specific off-target effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号