首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G. Chapline 《哲学杂志》2013,93(9):1201-1207
In a variety of materials superconductivity is associated with the existence of a quantum critical point (QCP). In the case of the hole doped cuprates there is evidence which suggests that the important quantum degrees of freedom near the superconducting critical point are localized charge and spin density fluctuations. We argue that if these degrees of freedom are strongly coupled by spin–orbit interactions, a new type of quantum criticality arises with monopole-like quasi-particles as the important quantum degrees of freedom. In layered material this type of quantum criticality can be modeled using a 2-dimensional non-linear Schrodinger equation with an SU(N) gauge field. We exhibit a pairing wave function for quasi-particles that has topological order and anisotropic properties. The superconducting transition would in some respects resemble a KT transition.  相似文献   

2.
Competing scenarios for quantum critical points (QCPs) of strongly interacting Fermi systems signaled by a divergent density of states at zero temperature are contrasted. The conventional scenario, which enlists critical fluctuations of a collective mode and attributes the divergence to a coincident vanishing of the quasi-particle strength z, is shown to be incompatible with identities arising from conservation laws prevailing in the fermionic medium. An alternative scenario, in which the topology of the Fermi surface is altered at the QCP, is found to explain the non-Fermi-liquid thermodynamic behavior observed experimentally in Yb-based compounds close to the QCP. It is suggested that combination of the topological scenario with the theory of quantum phase transitions will provide a proper foundation for analysis of the extended QCP region.  相似文献   

3.
We study the temperature dependence of the conductivity due to quantum interference processes for a two-dimensional disordered itinerant electron system close to a ferromagnetic quantum critical point. Near the quantum critical point, the crossover between diffusive and ballistic regimes of quantum interference effects occurs at a temperature T*=1/taugamma(E(F)tau)2, where gamma is the parameter associated with the Landau damping of the spin fluctuations, tau is the impurity scattering time, and E(F) is the Fermi energy. For a generic choice of parameters, T* is smaller than the nominal crossover scale 1/tau. In the ballistic quantum critical regime, the conductivity behaves as T1/3.  相似文献   

4.
We observe and explain a universal scaling rhochi = const for the electrical resistivity rho with the inverse magnetic susceptibility chi(-1) for the Kondo insulator CeRhSb(1-x)Snx. In the regime where the Kondo gap disappears (x > 0.12), the system forms a non-Fermi liquid (NFL), which transforms into a Fermi liquid at higher temperature. The NFL behavior is associated with the presence of a novel quantum critical point (QCP) at the Kondo insulator-correlated metal boundary. The divergent behavior of the resistivity, the susceptibility, and the specific heat has been observed when approaching the QCP from the metallic side and is interpreted as due to the competition between the Kondo and the intersite magnetic correlations.  相似文献   

5.
We solve the 3D periodic Anderson model using a two impurity cluster dynamical mean field theory. We obtain the temperature versus hybridization phase diagram. Approaching the quantum critical point (QCP) both the Néel and lattice Kondo temperatures decrease and they do not cross at the lowest temperature we reached. While strong ferromagnetic spin fluctuation on the Kondo side is observed, our result suggests the critical static spin susceptibility is local in space at the QCP. We observe in the crossover region a logarithmic temperature dependence in the specific heat coefficient and spin susceptibility.  相似文献   

6.
V. A. Khodel 《JETP Letters》2008,86(11):721-726
Two different scenarios of the quantum critical point (QCP), a zero-temperature instability of the Landau state related to the divergence of the effective mass, are investigated. Flaws of the standard scenario of the QCP, where this divergence is attributed to the occurrence of some second-order phase transition, are demonstrated. Salient features of a different topological scenario of the QCP, associated with the emergence of bifurcation points in the equation ∈(p) = μ that ordinarily determines the Fermi momentum, are analyzed. The topological scenario of the QCP is applied to three-dimensional (3D) Fermi liquids with an attractive current-current interaction.  相似文献   

7.
The effect of a high magnetic field on the electronic structure of HTSC cuprates is considered. The study is performed in the t-t′-t″-J* model, and the high magnetic field effect is taken into account not only as the Zeeman splitting of the one-electron levels, but also in the occupation numbers of the states with different spin projections and in the formation of the spin correlation functions. The field is assumed to be high enough to align all of the spins along the field. As a result, the Fermi surface reconstruction is obtained from four hole pockets about the nodal point (π/2, π/2) in the paramagnetic phase to a large hole pocket about the point (π, π) in the ferromagnetic phase. As the magnetic field strength decreases, a number of quantum phase transitions are revealed; they are manifested in the changed Fermi surface topology. The Fermi surface reconstruction with a decreasing field is qualitatively the same as that with an increasing doping degree in the absence of a magnetic field.  相似文献   

8.
We report experimental evidence for the phase diagram of doped cuprate superconductors as a function of the micro-strain of the planar Cu-O bond length, measured by Cu K-edge EXAFS, and hole doping . The local lattice distortions are measured by EXAFS and the charge ordering is measured by synchrotron radiation diffuse X-ray diffraction. This phase diagram shows a QCP at P() where for charge-orbital-spin stripes and free carriers co-exist. The superconducting phase occurs in the region of critical fluctuations around this QCP. The function of two variables shows its maximum at the strain QCP. The critical fluctuations near this strain QCP give the self-organization of a metallic superlattice of quantum wires “superstripes" that favors the amplification of the critical temperature. Received 25 September 2000  相似文献   

9.
We show that the emergent relativistic symmetry of electrons in graphene near its quantum critical point (QCP) implies a crucial importance of the Coulomb interaction. We derive scaling laws, valid near the QCP, that dictate the nontrivial magnetic and charge response of interacting graphene. Our analysis yields numerous predictions for how the Coulomb interaction will be manifested in experimental observables such as the diamagnetic response and electronic compressibility.  相似文献   

10.
V. A. Khodel 《JETP Letters》2007,86(11):721-726
Two different scenarios of the quantum critical point (QCP), a zero-temperature instability of the Landau state related to the divergence of the effective mass, are investigated. Flaws of the standard scenario of the QCP, where this divergence is attributed to the occurrence of some second-order phase transition, are demonstrated. Salient features of a different topological scenario of the QCP, associated with the emergence of bifurcation points in the equation ∈(p) = μ that ordinarily determines the Fermi momentum, are analyzed. The topological scenario of the QCP is applied to three-dimensional (3D) Fermi liquids with an attractive current-current interaction. The text was submitted by the author in English.  相似文献   

11.
We have produced an interacting quantum degenerate Fermi gas of atoms composed of two spin states of magnetically trapped 40K. The relative Fermi energies are adjusted by controlling the population in each spin state. Thermodynamic measurements reveal a resulting imbalance in the mean energy per particle between the two species, which is a factor of 1.4 at our lowest temperature. This imbalance of energy comes from a suppression of collisions between atoms in the gas due to the Pauli exclusion principle. Through measurements of the thermal relaxation rate we have directly observed this Pauli blocking as a factor of 2 reduction in the effective collision cross section in the quantum degenerate regime.  相似文献   

12.
We study the mechanism of how critical end points of first-order valence transitions are controlled by a magnetic field. We show that the critical temperature is suppressed to be a quantum critical point (QCP) by a magnetic field, and unexpectedly, the QCP exhibits nonmonotonic field dependence in the ground-state phase diagram, giving rise to the emergence of metamagnetism even in the intermediate valence-crossover regime. The driving force of the field-induced QCP is clarified to be cooperative phenomena of the Zeeman and Kondo effects, which create a distinct energy scale from the Kondo temperature. This mechanism explains the peculiar magnetic response in CeIrIn(5) and the metamagnetic transition in YbXCu(4) for X=In as well as the sharp contrast between X=Ag and Cd.  相似文献   

13.
Neutron diffraction experiments have been performed on a magnetically ordered CeCu2Si2 single crystal exhibiting A-phase anomalies in specific heat and thermal expansion. Below T(N) approximately 0.8 K antiferromagnetic superstructure peaks have been detected. The propagation vector of the magnetic order appears to be determined by the topology of the Fermi surface of heavy quasiparticles as indicated by renormalized band-structure calculations. The observation of long-range incommensurate antiferromagnetic order as the nature of the A phase in CeCu2Si2 suggests that a spin-density-wave instability is the origin of the quantum critical point in CeCu2Si2.  相似文献   

14.
A quasiparticle pattern advanced in Landau’s first article on Fermi-liquid theory is adapted to elucidate the properties of a class of strongly correlated Fermi systems characterized by a Lifshitz phase diagram featuring a quantum critical point (QCP) where the density of states diverges. The necessary condition for stability of the Landau Fermi-Liquid state is shown to break down in such systems, triggering a cascade of topological phase transitions that lead, without symmetry violation, to states with multi-connected Fermi surfaces. The end point of this evolution is found to be an exceptional state whose spectrum of single-particle excitations exhibits a completely flat portion at zero temperature. Analysis of the evolution of the temperature dependence of the single-particle spectrum yields results that provide a natural explanation of classical behavior of this class of Fermi systems in the QCP region.  相似文献   

15.
We review our recent experimental realization and investigation of a spin orbit (SO) coupled Bose Einstein condensate (BEC) and quantum degenerate Fermi gas. By using two counter-propagathlg Ranlan lasers and controlling the different frequency of two R,aman lasers to engineer the atom light interaction, we first study the SO coupling in BEC. Then we study SO coupling in Fermi gas. We, observe the spin dephasing in spin dynamics and momentum distribution asymmetry of the equilibrium state as halhnarks of SO coupling in a Fermi gas. To clearly reveal the, property of SO coupling Fermi gas, we also study the momentmn-resolved radio-frequency spectroscopy which characterizes the energy momentum dispersion and spin composition of the quantum states. We observe the change of errmion surfaces in different helieity branches with different atomic density, which indicates that a Lifshitz transition of the Fermi surface topology change can be found by further cooling the system. At last, we study the momentum-resolved Raman spectroscopy of an ultracoht Fermi gas.  相似文献   

16.
We propose that competition between Kondo and magnetic correlations results in a novel universality class for heavy fermion quantum criticality in the presence of strong randomness. Starting from an Anderson lattice model with disorder, we derive an effective local field theory in the dynamical mean-field theory approximation, where randomness is introduced into both hybridization and Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions. Performing the saddle-point analysis in the U(1) slave-boson representation, we reveal its phase diagram which shows a quantum phase transition from a spin liquid state to a local Fermi liquid phase. In contrast with the clean limit case of the Anderson lattice model, the effective hybridization given by holon condensation turns out to vanish, resulting from the zero mean value of the hybridization coupling constant. However, we show that the holon density becomes finite when the variance of the hybridization is sufficiently larger than that of the RKKY coupling, giving rise to the Kondo effect. On the other hand, when the variance of the hybridization becomes smaller than that of the RKKY coupling, the Kondo effect disappears, resulting in a fully symmetric paramagnetic state, adiabatically connected to the spin liquid state of the disordered Heisenberg model. We investigate the quantum critical point beyond the mean-field approximation. Introducing quantum corrections fully self-consistently in the non-crossing approximation, we prove that the local charge susceptibility has exactly the same critical exponent as the local spin susceptibility, suggesting an enhanced symmetry at the local quantum critical point. This leads us to propose novel duality between the Kondo singlet phase and the critical local moment state beyond the Landau-Ginzburg-Wilson paradigm. The Landau-Ginzburg-Wilson forbidden duality serves the mechanism of electron fractionalization in critical impurity dynamics, where such fractionalized excitations are identified with topological excitations.  相似文献   

17.
18.
We investigate the entanglement dynamics of two interacting qubits in a spin environment, which is described by an XY model with Dzyaloshinsky-Moriya (DM) interaction. The competing effects of environmental noise and interqubit coupling on entanglement generation for various system parameters are studied. We find that the entanglement generation is suppressed remarkably in weak-coupling region at quantum critical point (QCP). However, the suppression of the entanglement generation at QCP can be compensated both by increasing the DM interaction and by decreasing the anisotropy of the spin chain. Beyond the weak-coupling region, there exist resonance peaks of concurrence when the system-bath coupling equals to external magnetic field. We attribute the presence of resonance peaks to the flat band of the self-Hamiltonian. These peaks are highly sensitive to anisotropy parameter and DM interaction.  相似文献   

19.
We study Andreev bound states (ABS) and the resulting charge transport of a Rashba superconductor (RSC) where two-dimensional semiconductor (2DSM) heterostructures are sandwiched by spin-singlet s-wave superconductor and ferromagnet insulator. ABS becomes a chiral Majorana edge mode in the topological phase (TP). We clarify two types of quantum criticality about the topological change of ABS near a quantum critical point (QCP), whether or not ABS exists at QCP. In the former type, ABS has an energy gap and does not cross at zero energy in the nontopological phase. These complex properties can be detected by tunneling conductance between normal metal-RSC junctions.  相似文献   

20.
We used inelastic neutron scattering to study magnetic excitations of Sc1-xUxPd3 for U concentrations (x=0.25, 0.35) near the spin glass quantum critical point (QCP). The excitations are spatially incoherent, broad in energy (E=variant Planck's over 2piomega), and follow omega/T scaling at all wave vectors investigated. Since similar omega/T scaling has been observed for UCu5-xPdx and CeCu6-xAux near the antiferromagnetic QCP, we argue that the observed non-Fermi-liquid behavior in these f-electron materials arises from the critical phenomena near a T=0 K phase transition, irrespective of the nature of the transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号