首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents polymer pixel printing for applications in chemoselective sensors where nanosecond laser direct transfer methods, with a triazene polymer (TP) acting as a Dynamic Release Layer (DRL), are used. A systematic study of laser fluence, donor film morphology and both single- and multiple-pixel deposition were optimized with the final goal to obtain continuous pixels of sensitive polymers, polyethylenimine (PEI) and polyisobutylene (PIB), on SAW surfaces. Morphology characterization after the laser transfer has been performed by Optical Microscopy and Scanning Electron Microscopy (SEM). The responses of the coated transducers were measured after deposition with different laser fluences and it was found that a fluence under 625 mJ/cm2 was required in order to prevent damage of the interdigital transducers (IDT) of the sensor devices. The sensitivity of the polymer coated devices to acetone concentrations gives an indication that LIFT can be used for printing sensitive polymer pixels onto transducer devices.  相似文献   

2.
The master laser of an injection-seeded laser for Doppler wind lidar is frequency stabilized to a Fabry- Perot(FP)cavity using Pound-Drever-Hall technique.The FP cavity is specially designed to gain high temperature stability with Zerodur cavity and spacer.A computer based controller is used to sample and process the error signal.After the master laser is locked,the relative frequency drift,is±25 kHz in 1s, and±55 kHz in 1h,which can satisfy the need of Doppler wind lidar.  相似文献   

3.
In medical Doppler ultrasound systems, a high-pass filter which is usually employed to filter wall clutter components, will remove the information of the low velocity blood flow. To extract intact Doppler ultrasound blood signals, a novel approach is proposed based on the spatially selective noise filtration. The wall signals are firstly estimated by the spatially selective noise filtration from wavelet spatial correlation property. Then the wall clutters are exactly obtained by a wavelet threshold de-noising technique which eliminates the residual blood flow signals. Finally the intact blood flow signals are achieved by subtracting the wall signals from the mixed signals. This approach is applied to both computer simulated and in vivo carotid Doppler ultrasound signals. The experiment results show that the wavelet space based approach can exactly extract the blood flow signals, and achieve about 45% lower results in the mean absolute error than that of the high-pass filtering. This approach is expected to be an effective method to remove the wall clutters in Doppler ultrasound systems.  相似文献   

4.
We report a distributed-Bragg-reflectors-based 4 × 40 GHz mode-locked laser diode(MLLD) array monolithically integrated with a multimode interference(MMI) combiner. The laser produces 2.98 ps pulses with a timebandwidth product of 0.39. The peak wavelength of the MLLD array can be tuned by 8.4 nm while maintaining a good mode-locked state. The four mode-locked channels could work simultaneously with the peak wavelength interval around 3 nm.  相似文献   

5.
6.
This paper describes a novel array post-processing method for Non-Destructive Evaluation (NDE) using phased-array ultrasonic probes. The approach uses the capture and processing of the full matrix of all transmit–receive time-domain signals from a transducer array as in the case of the Total Focusing Method (TFM), referred as the standard of imaging algorithms. The proposed technique is based on correlation of measured signals with theoretical propagated signals computed over a given grid of points. In that case, real-time imaging can be simply implemented using discrete signal product. The advantage of the present technique is to take into account transducer directivity, dynamics and complex propagation patterns, such that the number of required array elements for a given imaging performance can be greatly reduced. Numerical and experimental application to contact inspection of isotropic structure is presented and real-time implementation issues are discussed.  相似文献   

7.
The three-dimensional (3D) lattice Boltzmann models, 3DQ15, 3DQ19 and 3DQ27, under different wall boundary conditions and lattice resolutions have been investigated by simulating Poiseuille flow in a circular cylinder for a wide range of Reynolds numbers. The 3DQ19 model with improved Fillippova and Hanel (FH) curved boundary condition represents a good compromise between computational efficiency and reliability. Blood flow in an aortic arch is then simulated as a typical haemodynamic application. Axial and secondary fluid velocity and effective wall shear stress profiles in a 180° bend are obtained, and the results also demonstrate that the lattice Boltzmann method is suitable for simulating the flow in 3D large-curved vessels.  相似文献   

8.
We introduce a novel loosely coupled-type algorithm for fluid–structure interaction between blood flow and thin vascular walls. This algorithm successfully deals with the difficulties associated with the “added mass effect”, which is known to be the cause of numerical instabilities in fluid–structure interaction problems involving fluid and structure of comparable densities. Our algorithm is based on a time-discretization via operator splitting which is applied, in a novel way, to separate the fluid sub-problem from the structure elastodynamics sub-problem. In contrast with traditional loosely-coupled schemes, no iterations are necessary between the fluid and structure sub-problems; this is due to the fact that our novel splitting strategy uses the “added mass effect” to stabilize rather than to destabilize the numerical algorithm. This stabilizing effect is obtained by employing the kinematic lateral boundary condition to establish a tight link between the velocities of the fluid and of the structure in each sub-problem. The stability of the scheme is discussed on a simplified benchmark problem and we use energy arguments to show that the proposed scheme is unconditionally stable. Due to the crucial role played by the kinematic lateral boundary condition, the proposed algorithm is named the “kinematically coupled scheme”.  相似文献   

9.
The cerebral blood flow(CBF) alterations related to sound-induced opening of the blood–brain barrier(BBB) in adult mice are studied using laser speckle contrast imaging(LSCI) and wavelet analysis of vascular physiology.The results clearly show that the opening of the BBB is accompanied by the changes of venous but not microvessel circulation in the brain. The elevation of the BBB permeability is associated with the decrease of venous CBF and the increase of its complexity. These data suggest that the cerebral veins rather than microvessels are sensitive components of the CBF related to the opening BBB.  相似文献   

10.
We developed a low-power, portable, wireless laser spectroscopic sensor for atmospheric CO2 monitoring. The sensor is based on tunable diode laser absorption spectroscopy with a 2-μm wavelength VCSEL as a source and wavelength modulation technique for spectroscopic signal detection. The sensor allows measurement of CO2 concentration changes with a 1σ sensitivity of 0.14 ppmv?Hz?1/2. This sensor was both laboratory and field tested under varying environmental conditions. It was used to measure a soil respiration rate of topsoil in the lab and of forest floors in the field. Measurement results are compared with those of commercial non-dispersive infrared sensors and very good agreement is found.  相似文献   

11.
I.IntroductionBloodflowmeastirementsbyultrasoundaxeofgreatillterestbecauseoftheattractivenoIilnvasivenatureandthenonionizingpropertyofultrasound.TheultrasoundbloodflowanalyzermostcommonlyusedinthehospitalsnowarethepuJsedwave(PW)systems.TheconventionaJPWsystemsarebasedonDopplereffectsothatitisnamedPWDopplerMethod.Kasaiproposedamethodcalledautocorrelationthatestimatesthemeanvelocityanditsvariancebytheautocorrelationfunctionofthereceivedsignals[1].BothPWDopplerandautocorrelationmethodsarei…  相似文献   

12.
A sensor for sensitive in situ measurements of carbon monoxide and temperature in combustion gases has been developed using absorption transitions in the (v′=1←v″=0) and (v′=2←v″=1) fundamental bands of CO. Recent availability of mid-infrared quantum-cascade (QC) lasers provides convenient access to the CO fundamental band near 4.7 μm, having approximately 104 and 102 times stronger absorption line-strengths compared to the overtone bands near 1.55 μm and 2.3 μm used previously to sense CO in combustion gases. Spectroscopic parameters of the selected transitions were determined via laboratory measurements in a shock tube over the 1100–2000 K range and also at room temperature. A single-laser absorption sensor was developed for accurate CO measurements in shock-heated gases by scanning the line pair v″=0, R(12) and v″=1, R(21) at 2.5 kHz. To capture the rapidly varying CO time-histories in chemical reactions, two different QC lasers were then used to probe the line-center absorbance of transitions v″=0, P(20) and v″=1, R(21) with a bandwidth of 1 MHz using fixed-wavelength direct absorption. The sensor was applied in successful shock tube measurements of temperature and CO time-histories during the pyrolysis and oxidation of methyl formate, illustrating the capability of this sensor for chemical kinetic studies.  相似文献   

13.
A four-channel Kirkpatrick–Baez microscope working at multiple energy bands is developed for multiframe X-ray imaging diagnostics at the Shenguang-II laser facility. The response to the multiple energy bands is realized by coating the double-periodic multilayers on the reflected surfaces of the microscope. Because of the limited size of the microstrips in the X-ray framing camera, the image separation is controlled by the conical angle of the reference cores during microscope assembly. This study describes the optical and multilayer design, assembly, and alignment of the developed microscope. The microscope achieves a spatial resolution of 4–5 mm in the laboratory and 10–20 mm at Shenguang-II laser facility within a 300 mm field of view. The versatile nature of the developed microscope enables the multiple microscopes currently installed in the laser facility to be replaced with a single, multipurpose microscope.  相似文献   

14.
We introduce and study numerically a scalable parallel finite element solver for the simulation of blood flow in compliant arteries. The incompressible Navier–Stokes equations are used to model the fluid and coupled to an incompressible linear elastic model for the blood vessel walls. Our method features an unstructured dynamic mesh capable of modeling complicated geometries, an arbitrary Lagrangian–Eulerian framework that allows for large displacements of the moving fluid domain, monolithic coupling between the fluid and structure equations, and fully implicit time discretization. Simulations based on blood vessel geometries derived from patient-specific clinical data are performed on large supercomputers using scalable Newton–Krylov algorithms preconditioned with an overlapping restricted additive Schwarz method that preconditions the entire fluid–structure system together. The algorithm is shown to be robust and scalable for a variety of physical parameters, scaling to hundreds of processors and millions of unknowns.  相似文献   

15.
A fast interrogation method using a sinusoidal modulated laser diode for a fiber Fabry–Perot interferometric sensor consisting of Bragg gratings (FBG–FPI) is proposed.. The FBG–FPI has sharp transmittance peaks in the reflection band of the FBGs. Wavelength sweep produced by current modulation of a laser diode can be used to detect the peak position. This enables high-resolution strain or temperature measurement. To precisely control the current, the current modulation is realized using a laser diode controller (LDC) with external modulation function. In the modulation by a sawtooth wave, the possible speed of wavelength sweeping is limited to 100 kHz or less due to the bandwidth limitation of an LDC and thermal effect in a laser diodeUsing a sinusoidal wave as a modulation waveform enables wavelength sweeping at speeds exceeding 100 kHz. The modulation characteristics of the laser wavelength is evaluated experimentally and the operating wavelength is monitored using an asymmetric Mach–Zehnder interferometer. The resolution of 0.2 fm/\(\sqrt{\mathrm{Hz}}\) and measurement time of 1 \(\upmu\)s were experimentally demonstrated in the present sensor.  相似文献   

16.
This paper reports the results of some recent experiments performed at the LULI laboratory (Palaiseau, France) concerning the propagation of large relativistic electron currents in a gas jet. We present our experimental results according to the type of diagnostics used in the experiments: (1) time resolved optical shadowgraphy and (2) proton imaging. Proton radiography images did show the presence of very strong fields in the gas probably produced by charge separation. In turn, these imply a slowing down of the fast electron cloud as it penetrates in the gas. Indeed, shadowgraphy images show a strong inhibition of propagation and a strong reduction in time of the velocity of the electron cloud from the initial value, which is of the order of a fraction of c.  相似文献   

17.
Mid-infrared laser absorption sensors based on quantum cascade laser (QCL) technology offer the potential for high-sensitivity, selective, and high-speed measurements of temperature and concentration for species of interest in high-temperature environments, such as those found in combustion devices. A new mid-infrared QCL absorption sensor for carbon monoxide and temperature measurements has been developed near the intensity peak of the CO fundamental band at 4.6 μm, providing orders-of-magnitude greater sensitivity than the overtone bands accessible with telecommunications lasers. The sensor is capable of probing the R(9), R(10), R(17), and R(18) transitions of the CO fundamental ro-vibrational band which are located at frequencies where H2O and CO2 spectral interference is minimal. Temperature measurements are made via scanned-wavelength two-line ratio techniques using either the R(9) and R(17) or the R(10) and R(18) line pairs. The high-speed (1–2 kHz) scanned-wavelength sensor is demonstrated in room-temperature gas cell measurements of CO and, to demonstrate the potential of the sensor for high-temperature thermometry, in shock-heated gases containing CO for a very wide range of temperature (950–3500 K) near 1 atm. To our knowledge, these measurements represent the first use of QCL-based absorption sensor for thermometry at elevated combustion-like temperatures. The high-temperature measurements of CO mole fraction and temperature agree with the post-reflected-shock conditions within ±1.5% and ±1.2% (1σ deviation), respectively.  相似文献   

18.
Doppler wind lidar (DWL) measurements by the fringe-imaging technique in front of aircrafts at flight speed require rapid processing of backscattered signals. We discuss the measurement principle to derive the 3D wind vector from three line-of-sight (LOS) measurements. Then we simulate realistic fringe patterns of a Fabry–Pérot-interferometer (FPI) on a 2D charge-coupled device (CCD) localized at the focal plane behind it, taking atmospheric and instrument properties like scattering and noise into account. A laser at 355 nm with pulse energies of 70 mJ at 100 Hz repetition rate and a range bin of only 10 m were assumed. This yields count rates of 24 (13) million photons per pulse at 56 (76) m distance and 8.5 km altitude that are distributed on a CCD with up to 960×780 pixels without intensification and therefore generate noisy pixel signals. We present two methods for the precise determination of the radii, i.e., wavelengths of these simulated FPI rings and show that both are suitable for eliminating pixel noise from the output and coping with fringe broadening by Rayleigh scattering. One of them proves to reach the accuracy necessary for LOS velocity measurements. A standard deviation of 2.5 m/s including center determination can be achieved with only 20 images to average. The bias is 7 m/s. For exactly known ring centers, each can be even better than 2 m/s. The methods could also be useful for high-resolution laser spectroscopy.  相似文献   

19.
Simranjit Singh  R.S. Kaler 《Optik》2012,123(24):2199-2203
In this paper, we investigated the performance of multi terabits DWDM system consisting of hybrid optical amplifier RAMAN-EDFA for different data format such as non-return to zero (NRZ), return to zero (RZ) and differential phase shift keying (DPSK). We find that in 64 × 10 and 96 × 10 Gbps, RZ is more adversely affected by nonlinearities, where as NRZ and DPSK is more affected by dispersion. We further show that RZ provide good quality factor (13.88 dB and 15.93 dB for 64 and 96 channels), less eye closure (2.609 dB and 3.191 dB for 64 and 96 channels) and acceptable bit error rate (3.89 × 108 and 1.24 × 109 for 64 and 96 channels) at the respective distance as compare to other existing modulation format. We further investigated the maximum single span distance covered by using existing data formats.  相似文献   

20.
Results are presented that were obtained by analyzing arrival directions for cosmic rays recorded by the Yakutsk array between 1974 and 2001 in the energy range E0=1017.6–17.9 eV for zenith angles in the region θ≤53°. It is shown that their flux consists of two components—an isotropic (about 75%) and a cluster (about 25%) one—that are characterized by sharply different degrees of anisotropy. At E0=1017.7–17.8 eV, the observed showers are found to be strongly correlated with the Supergalaxy plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号