首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We study control of wave packets with a finite accuracy, approaching it as quantum information processing. For a given control resolution, we define the analogs of several quantum bits within the shape of a single wave packet. These bits are based on wave packet symmetries. Analogs of one- and two-bit gates can be implemented using only free wave packet evolution and coordinate-dependent ac Stark shifts applied at the moments of fractional revivals. As in quantum computation, the gates form a logarithmically small set of basis operations which can be used to approximate any unitary transformation desired for quantum control of the wave packet dynamics. Numerical examples show the application of this approach to control vibrational wave packet revivals.  相似文献   

2.
We propose a new physical approach for encoding and processing of quantum information in ensembles of multilevel quantum systems, where the different bits are not carried by individual particles but associated with the collective population of different internal levels. One- and two-bit gates are implemented by collective internal state transitions taking place in the presence of an excitation blockade mechanism, which restricts the population of each internal state to the values zero and unity. Quantum computers with 10-20 bits can be built via this scheme in single trapped clouds of ground state atoms subject to the Rydberg excitation blockade mechanism, and the linear dependence between register size and the number of internal quantum states in atoms offers realistic means to reach larger registers.  相似文献   

3.
Arvind 《Pramana》2001,56(2-3):357-365
The existence of entangled quantum states gives extra power to quantum computers over their classical counterparts. Quantum entanglement shows up qualitatively at the level of two qubits. We demonstrate that the one- and the two-bit Deutsch-Jozsa algorithm does not require entanglement and can be mapped onto a classical optical scheme. It is only for three and more input bits that the DJ algorithm requires the implementation of entangling transformations and in these cases it is impossible to implement this algorithm classically.  相似文献   

4.
龙桂鲁  刘洋 《物理学进展》2011,28(4):410-431
我们综述最近提出的广义量子干涉原理及其在量子计算中的应用。广义量子干涉原理是对狄拉克单光子干涉原理的具体化和多光子推广,不但对像原子这样的紧致的量子力学体系适用,而且适用于几个独立的光子这样的松散量子体系。利用广义量子干涉原理,许多引起争议的问题都可以得到合理的解释,例如两个以上的单光子的干涉等问题。从广义量子干涉原理来看双光子或者多光子的干涉就是双光子和双光子自身的干涉,多光子和多光子自身的干涉。广义量子干涉原理可以利用多组分量子力学体系的广义Feynman积分表示,可以定量地计算。基于这个原理我们提出了一种新的计算机,波粒二象计算机,又称为对偶计算机。在原理上对偶计算机超越了经典的计算机和现有的量子计算机。在对偶计算机中,计算机的波函数被分成若干个子波并使其通过不同的路径,在这些路径上进行不同的量子计算门操作,而后这些子波重新合并产生干涉从而给出计算结果。除了量子计算机具有的量子平行性外,对偶计算机还具有对偶平行性。形象地说,对偶计算机是一台通过多狭缝的运动着的量子计算机,在不同的狭缝进行不同的量子操作,实现对偶平行性。目前已经建立起严格的对偶量子计算机的数学理论,为今后的进一步发展打下了基础。本文着重从物理的角度去综述广义量子干涉原理和对偶计算机。现在的研究已经证明,一台d狭缝的n比特的对偶计算机等同与一个n比特+一个d比特(qudit)的普通量子计算机,证明了对偶计算机具有比量子计算机更强大的能力。这样,我们可以使用一台具有n+log2d个比特的普通量子计算机去模拟一个d狭缝的n比特对偶计算机,省去了研制运动量子计算机的巨大的技术上的障碍。我们把这种量子计算机的运行模式称为对偶计算模式,或简称为对偶模式。利用这一联系反过来可以帮助我们理解广义量子干涉原理,因为在量子计算机中一切计算都是普通的量子力学所允许的量子操作,因此广义量子干涉原理就是普通的量子力学体系所允许的原理,而这个原理只是是在多体量子力学体系中才会表现出来。对偶计算机是一种新式的计算机,里面有许多问题期待研究和发展,同时也充满了机会。在对偶计算机中,除了幺正操作外,还可以允许非幺正操作,几乎包括我们可以想到的任何操作,我们称之为对偶门操作或者广义量子门操作。目前这已经引起了数学家的注意,并给出了广义量子门操作的一些数学性质。此外,利用量子计算机和对偶计算机的联系,可以将许多经典计算机的算法移植到量子计算机中,经过改造成为量子算法。由于对偶计算机中的演化是非幺正的,对偶量子计算机将可能在开放量子力学的体系的研究中起到重要的作用。  相似文献   

5.
Particle swarm optimization algorithm (PSO) is an effective metaheuristic that can determine Pareto-optimal solutions. We propose an extended PSO by introducing quantum gates in order to ensure the diversity of particle populations that are looking for efficient alternatives. The quality of solutions was verified in the issue of assignment of resources in the computing cloud to improve the live migration of virtual machines. We consider the multi-criteria optimization problem of deep learning-based models embedded into virtual machines. Computing clouds with deep learning agents can support several areas of education, smart city or economy. Because deep learning agents require lots of computer resources, seven criteria are studied such as electric power of hosts, reliability of cloud, CPU workload of the bottleneck host, communication capacity of the critical node, a free RAM capacity of the most loaded memory, a free disc memory capacity of the most busy storage, and overall computer costs. Quantum gates modify an accepted position for the current location of a particle. To verify the above concept, various simulations have been carried out on the laboratory cloud based on the OpenStack platform. Numerical experiments have confirmed that multi-objective quantum-inspired particle swarm optimization algorithm provides better solutions than the other metaheuristics.  相似文献   

6.
Quantum transport models for nanodevices using the non-equilibrium Green’s function method require the repeated calculation of the block tridiagonal part of the Green’s and lesser Green’s function matrices. This problem is related to the calculation of the inverse of a sparse matrix. Because of the large number of times this calculation needs to be performed, this is computationally very expensive even on supercomputers. The classical approach is based on recurrence formulas which cannot be efficiently parallelized. This practically prevents the solution of large problems with hundreds of thousands of atoms. We propose new recurrences for a general class of sparse matrices to calculate Green’s and lesser Green’s function matrices which extend formulas derived by Takahashi and others. We show that these recurrences may lead to a dramatically reduced computational cost because they only require computing a small number of entries of the inverse matrix. Then, we propose a parallelization strategy for block tridiagonal matrices which involves a combination of Schur complement calculations and cyclic reduction. It achieves good scalability even on problems of modest size.  相似文献   

7.
We propose a scheme to implement two-bit .quantum phase gates and one-bit unitary gates by using the two- mode two-photon Jaynes Cummings model. The entanglement between the atom and cavity is also investigated in the presence of phase decoherence. It is found that there is stationary entanglement that is sensitive with the detuning  相似文献   

8.
An intramolecular computing model is presented that is based on the quantum time evolution of a single molecule driven by the preparation of a non-stationary single-electron state. In our scheme, the input bits are encoded into the coupling constants of the Hamiltonian that governs the molecular quantum dynamics. The results of the computation are obtained by carrying out a quantum measurement on the molecule. We design reliable , , and logic gates. This opens new avenues for the design of more complex logic circuits at a single-molecular scale.  相似文献   

9.
Optimal implementation of quantum gates is crucial for designing a quantum computer. We consider the matrix representation of an arbitrary multiqubit gate. By ordering the basis vectors using the Gray code, we construct the quantum circuit which is optimal in the sense of fully controlled single-qubit gates and yet is equivalent with the multiqubit gate. In the second step of the optimization, superfluous control bits are eliminated, which eventually results in a smaller total number of the elementary gates. In our scheme the number of controlled NOT gates is O(4(n)) which coincides with the theoretical lower bound.  相似文献   

10.
In this paper we briefly describe a Mathematica program for simulation of quantum circuits and illustrate some of its facilities by simple examples. Unlike other Mathematica-based quantum simulators, our program provides a user-friendly graphical interface for generating quantum circuits and computing the circuit unitary matrices. In addition to standard linear algebra-based tools, our program implements special computer-algebra technique for constructing the multivariate polynomial system that, for a circuit composed from the Toffoli and Hadamard gates, uniquely defines the circuit matrix.  相似文献   

11.
We report an experimental realization of one-way quantum computing on a two-photon four-qubit cluster state. This is accomplished by developing a two-photon cluster state source entangled both in polarization and spatial modes. With this special source, we implemented a highly efficient Grover's search algorithm and high-fidelity two-qubit quantum gates. Our experiment demonstrates that such cluster states could serve as an ideal source and a building block for rapid and precise optical quantum computation.  相似文献   

12.
The monodromy approach to quantum computing is based on a holomorphic vector bundle with a meromorphic connection. The gates for computation are obtained from the monodromy matrices of the connection. The text was submitted by the author in English.  相似文献   

13.
We propose to use a single mesoscopic ensemble of trapped polar molecules for quantum computing. A "holographic quantum register" with hundreds of qubits is encoded in collective excitations with definite spatial phase variations. Each phase pattern is uniquely addressed by optical Raman processes with classical optical fields, while one- and two-qubit gates and qubit readout are accomplished by transferring the qubit states to a stripline microwave cavity field and a Cooper pair box where controllable two-level unitary dynamics and detection is governed by classical microwave fields.  相似文献   

14.
张茜  李萌  龚旗煌  李焱 《物理学报》2019,68(10):104205-104205
量子比特在同一时刻可处于所有可能状态上的叠加特性使得量子计算机具有天然的并行计算能力,在处理某些特定问题时具有超越经典计算机的明显优势.飞秒激光直写技术因其具有单步骤高效加工真三维光波导回路的能力,在制备通用型集成光量子计算机的基本单元—量子逻辑门中发挥着越来越重要的作用.本文综述了飞秒激光直写由定向耦合器构成的光量子比特逻辑门的进展.主要包括定向耦合器的功能、构成、直写和性能表征,集成波片、哈达玛门和泡利交换门等单量子比特逻辑门、受控非门和受控相位门等两量子比特逻辑门的直写加工,并对飞秒激光加工三量子比特逻辑门进行了展望.  相似文献   

15.
Quantum optimal control theory allows us to design accurate quantum gates. We employ it to design high-fidelity two-bit gates for Josephson charge qubits in the presence of both leakage and noise. Our protocol considerably increases the fidelity of the gate and, more important, it is quite robust in the disruptive presence of 1/f noise. The improvement in the gate performances discussed in this work (errors approximately 10(-3)-10(-4) in realistic cases) allows us to cross the fault tolerance threshold.  相似文献   

16.
A random access memory (RAM) uses n bits to randomly address N=2(n) distinct memory cells. A quantum random access memory (QRAM) uses n qubits to address any quantum superposition of N memory cells. We present an architecture that exponentially reduces the requirements for a memory call: O(logN) switches need be thrown instead of the N used in conventional (classical or quantum) RAM designs. This yields a more robust QRAM algorithm, as it in general requires entanglement among exponentially less gates, and leads to an exponential decrease in the power needed for addressing. A quantum optical implementation is presented.  相似文献   

17.
Tasked with the challenge to build better and better computers, quantum computing and classical computing face the same conundrum: the success of classical computing systems. Small quantum computing systems have been demonstrated, and intermediate-scale systems are on the horizon, capable of calculating numeric results or simulating physical systems far beyond what humans can do by hand. However, to be commercially viable, they must surpass what our wildly successful, highly advanced classical computers can already do. At the same time, those classical computers continue to advance, but those advances are now constrained by thermodynamics, and will soon be limited by the discrete nature of atomic matter and ultimately quantum effects. Technological advances benefit both quantum and classical machinery, altering the competitive landscape. Can we build quantum computing systems that out-compute classical systems capable of some \(10^{30}\) logic gates per month? This article will discuss the interplay in these competing and cooperating technological trends.  相似文献   

18.
We present a classical protocol, using the matrix product-state representation, to simulate cluster-state quantum computation at a cost polynomial in the number of qubits in the cluster and exponential in d---the width of the cluster. We use this result to show that any log-depth quantum computation in the gate array model, with gates linking only nearby qubits, can be simulated efficiently on a classical computer.  相似文献   

19.
We analyze and demonstrate the feasibility and superiority of linear optical single-qubit fingerprinting over its classical counterpart. For one-qubit fingerprinting of two-bit messages, we prepare "tetrahedral" qubit states experimentally and show that they meet the requirements for quantum fingerprinting to exceed the classical capability. We prove that shared entanglement permits 100% reliable quantum fingerprinting, which will outperform classical fingerprinting even with arbitrary amounts of shared randomness.  相似文献   

20.
The oracle chooses a function out of a known set of functions and gives to the player a black box that, given an argument, evaluates the function. The player should find out a certain character of the function (e.g. its period) through function evaluation. This is the typical problem addressed by the quantum algorithms. In former theoretical work, we showed that a quantum algorithm requires the number of function evaluations of a classical algorithm that knows in advance 50% of the information that specifies the solution of the problem. This requires representing physically, besides the solution algorithm, the possible choices of the oracle. Here we check that this 50% rule holds for the main quantum algorithms. In structured problems, a classical algorithm with the advanced information, to identify the missing information should perform one function evaluation. The speed up is exponential since a classical algorithm without advanced information should perform an exponential number of function evaluations. In unstructured database search, a classical algorithm that knows in advance n/2 bits of the database location, to identify the n/2 missing bits should perform O(2 n/2) function evaluations. The speed up is quadratic since a classical algorithm without advanced information should perform O(2 n ) function evaluations. The 50% rule allows to identify in an entirely classical way the problems solvable with a quantum sped up. The advanced information classical algorithm also defines the quantum algorithm that solves the problem. Each classical history, corresponding to a possible way of getting the advanced information and a possible result of computing the missing information, is represented in quantum notation as a sequence of sharp states. The sum of the histories yields the function evaluation stage of the quantum algorithm. Function evaluation entangles the oracle’s choice register (containing the function chosen by the oracle) and the solution register (in which to read the solution at the end of the algorithm). Information about the oracle’s choice propagates from the former to the latter register. Then the basis of the solution register should be rotated to make this information readable. This defines the quantum algorithm, or its iterate and the number of iterations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号