首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By employing Hirota bilinear method and Riemann theta functions of genus one,explicit triply periodic wave solutions for the(2+1)-dimensional Boussinesq equation are constructed under the Backlund transformation u =(1 /6)(u0 1) + 2[ln f(x,y,t)] xx,four kinds of triply periodic wave solutions are derived,and their long wave limit are discussed.The properties of one of the solutions are shown in Fig.1.  相似文献   

2.
2N line-soliton solutions of the (3+1)-dimensional Jimbo-Miwa equation can be presented by resorting to the Hirota bilinear method. In this paper, N periodic-soliton solutions of the (3+1)-dimensional Jimbo-Miwa equation are obtained from the 2N line-soliton solutions by selecting the parameters into conjugated complex parameters in pairs.  相似文献   

3.
For describing various complex nonlinear phenomena in the realistic world, the higher-dimensional nonlinear evolution equations appear more attractive in many fields of physical and engineering sciences. In this paper, by virtue of the Hirota bilinear method and Riemann theta functions, the periodic wave solutions for the (2+1)-dimensional Boussinesq equation and (3+1)-dimensional Kadomtsev Petviashvili (KP) equation are obtained. Furthermore, it is shown that the known soliton solutions for the two equations can be reduced from the periodic wave solutions.  相似文献   

4.
A new generalized F-expansion method is introduced and applied to the study of the (2+1)-dimensional Boussinesq equation. The further extension of the method is discussed at the end of this paper.  相似文献   

5.
6.
The (2 1)-dimensional Boussinesq equation and (3 1)-dimensional KP equation are studied by using the extended Jacobi elliptic-function method. The exact periodic-wave solutions for the two equations are obtained.  相似文献   

7.
The (2 1)-dimensional Boussinesq equation and (3 1)-dimensional KP equation are studied by using the extended Jacobi elliptic-function method. The exact periodic-wave solutions for the two equations are obtained.  相似文献   

8.
The extended homoclinic test function method is a kind of classic, efficient and well-developed method to solve nonlinear evolution equations. In this paper, with the help of this approach, we obtain new exact solutions (including kinky periodic solitary-wave solutions, periodic soliton solutions, and crosskink-wave solutions) for the new (2+1)-dimensional KdV equation. These results enrich the variety of the dynamics of higher-dimensional nonlinear wave field.  相似文献   

9.
In this work, we study a new (2+1)-dimensional generalized breaking soliton equation which admits the Painleve property for one special set of parameters. We derive multiple soliton solutions, traveling wave solutions, and periodic solutions as well. We use the simplified Hirotas method and a variety of ansatze to achieve our goal.  相似文献   

10.
The Lax–Kadomtsev–Petviashvili equation is derived from the Lax fifth order equation, which is an important mathematical model in fluid physics and quantum field theory. Symmetry reductions of the Lax–Kadomtsev–Petviashvili equation are studied by the means of the Clarkson–Kruskal direct method and the corresponding reduction equations are solved directly with arbitrary constants and functions.  相似文献   

11.
Two new exact, rational and periodic wave solutions are derived for the two-dimensional Boussinesq equation. For the first solution it is obtained by performing an appropriate limiting procedure on the soliton solutions obtained by Hirota bilinear method. The second one in terms of Riemann theta function is explicitly presented by virtue of Hirota bilinear method and its asymptotic property is also analyzed in detail. Moreover, it is of interest to note that classical soliton solutions can be reduced from the periodic wave solutions.  相似文献   

12.
2N line-soliton solutions of the (3+1)-dimensional Jimbo-Miwa equation can be presented by resorting to the Hirota bilinear method. In this paper, N periodic-soliton solutions of the (3+1)-dimensional Jimbo-Miwa equation are obtained from the 2N line-soliton solutions by selecting the parameters into conjugated complex parameters in pairs.  相似文献   

13.
It is common knowledge that the soliton solutions u(x, t) defined by the bell-shape form is required to satisfy the following condition lira u(x, t) = u(±∞, t) = 0. However, we think that the above condition can be modified as lim u(x, t) = u(±∞, t)^x→ = c, where c is a constant, which is called as a stationary height of u(x, t) in the present paper.^x→∞ If u(x, t) is a bell-shape solitary solution, then the stationary height of each solitary wave is just c. Under the constraint c = 0, all the solitary waves coming from the N-bell-shape-sollton solutions of the KdV equation are the same-oriented travelling. A new type of N-soliton solution with the bell shape is obtained in the paper, whose stationary height is an arbitrary constant c. Taking c ≥ 0, the resulting solitary wave is bound to be the same-oriented travelling. Otherwise, the resulting solitary wave may travel at the same orientation, and also at the opposite orientation. In addition, another type of singular rational travelling solution to the KdV equation is worked out.  相似文献   

14.
A new (2+1)-dimensional higher-order extended asymmetric Nizhnik–Novikov–Veselov (eANNV) equation is proposed by introducing the additional bilinear terms to the usual ANNV equation. Based on the independent transformation, the bilinear form of the eANNV equation is constructed. The lump wave is guaranteed by introducing a positive constant term in the quadratic function. Meanwhile, different class solutions of the eANNV equation are obtained by mixing the quadratic function with the exponential functions. For the interaction between the lump wave and one-soliton, the energy of the lump wave and one-soliton can transfer to each other at different times. The interaction between a lump and two-soliton can be obtained only by eliminating the sixth-order bilinear term. The dynamics of these solutions are illustrated by selecting the specific parameters in three-dimensional, contour and density plots.  相似文献   

15.
16.
New exact solutions in terms of the Jacobi elliptic functions are obtained to the (2+1)-dimensional breaking soliton equation by means of the modified mapping method. Limit cases are studied, and new solitary wave solutions and triangular periodic wave solutions are obtained.  相似文献   

17.
In this paper, an explicit N-fold Darboux transformation with multi-parameters for both a (1+1)- dimensional Broer-Kaup (BK) equation and a (1+1)-dimensional high-order Broer-Kaup equation is constructed with the help of a gauge transformation of their spectral problems. By using the Darboux transformation and new basic solutions of the spectral problems, 2N-soliton solutions of the BK equation, the high-order BK equation, and the Kadomtsev-Petviashvili (KP) equation are obtained.  相似文献   

18.
Painlev integrability has been tested for (2+1)D Boussinesq equation with disturbance term using the standard WTC approach after introducing the Kruskai's simplification. New breather solitary solutions depending on constant equilibrium solution are obtained by using Extended Homoclinic Test Method. Moreover, the spatiotemporal feature of breather solitary wave is exhibited.  相似文献   

19.
We investigate analytical solutions of the(2+1)-dimensional combining cubic-quintic nonlinear Schrdinger(CQNLS) equation by the classical Lie group symmetry method.We not only obtain the Lie-point symmetries and some(1+1)-dimensional partial differential systems,but also derive bright solitons,dark solitons,kink or anti-kink solutions and the localized instanton solution.  相似文献   

20.
The singular manifold method is used to obtain two general solutions to a (2 1)-dimensional breaking soliton equation, each of which contains two arbitrary functions. Then the new periodic wave solutions in terms of the Jacobi elliptic functions are generated from the general solutions. The long wave limit yields the new types of dromion and solitary structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号