首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For the first time, SBA‐15/cyclodextrin nanosponge adduct was synthesized through reaction of Cl‐functionalized SBA‐15 and amine‐functionalized cyclodextrin nanosponge (CDNS). This adduct, which benefits from features of both SBA‐15 and CDNS, was then used for immobilization of Ag(0) nanoparticles which were prepared and capped using a bio‐based approach. Ag@CDNS–SBA‐15 was applied as a heterogeneous catalyst for promoting the three‐component reaction of benzaldehydes, 4‐hydroxycoumarin and urea or thiourea under ultrasonic irradiation to furnish benzopyranopyrimidines. The reaction variables were optimized using response surface methodology. The catalytic activity of Ag@CDNS–SBA‐15 was higher than those of Ag@CDNS, Ag@SBA‐15 and Ag@SBA‐15 + CDNS, confirming the contribution of both components to catalysis as well as a synergistic effect between CDNS and SBA‐15. The role of CDNS was to accommodate the substrates and bring them to the vicinity of the Ag(0) nanoparticles. Notably the catalyst was reusable and could be recovered and reused for up to four reaction runs with slight Ag(0) leaching and loss of catalytic activity.  相似文献   

2.
A novel hybrid system composed of sepiolite clay and cyclodextrin nanosponge (CDNS) was prepared via reaction of Cl‐functionalized sepiolite with amine‐functionalized CDNS. CDNS–sepiolite was then applied for immobilization of Pd(0) nanoparticles. The resulting hybrid system, Pd@CDNS‐sepiolite, was characterized using various techniques and successfully used as an efficient and heterogeneous catalyst for ligand‐ and copper‐free Sonogashira and Heck coupling reactions under mild reaction conditions. Recycling experiments confirmed that Pd@CDNS‐sepiolite was recyclable and could be used for several consecutive reaction runs with slight Pd leaching and loss of catalytic activity.  相似文献   

3.
A water‐soluble, cyclodextrin‐supported palladium complex (DACH‐Pd‐β‐CD) catalytic system was designed and synthesized, which can efficiently catalyze Suzuki–Miyaura cross‐coupling reactions between aryl halides and arylboronic acid in water under mild conditions. The catalyst was successfully characterized using the methods of transmission electron microscopy, energy‐dispersive X‐ray spectrometry, X‐ray diffraction, thermogravimetric analysis, and Fourier transform infrared and NMR spectroscopies. Furthermore, the catalyst can be easily separated from the reaction mixture and still maintain high catalytic activity after ten cycles. No leaching of palladium into the reaction solution occurred. The advantages of green solvent (water), short reaction times (2–6 h), low catalyst loading (0.001 mol%), excellent yields (up to 99%) and reusability of the catalyst mean it will have potential applications in green chemical synthesis.  相似文献   

4.
A novel heterogeneous catalyst, HPA@HNTs‐IMI‐SO3H, was designed and synthesized based on functionalization of halloysite nanotubes with ionic liquid and subsequent incorporation of heteropolyacid. The structure of the catalyst was studied and confirmed by using SEM/EDX, FTIR, XRD, ICP‐AES, TGA, DTGA and BET. Moreover, the catalytic activity of HPA@HNTs‐IMI‐SO3H was investigated for promoting ultrasonic‐assisted three‐component reaction of isatines, malononitrile or cyanoacetic esters and 1,3‐dicarbonyl compounds to afford corresponding spirooxindole in high yields and short reaction time. The reusability of the catalyst was also studied. Notably, the catalyst could be recovered and reused for three reaction runs. However, reusing for fourth reaction runs led to the decrease of the catalytic activity. Considering leaching test results, that observation was attributed to the leaching of heteropolyacids, which can be induced by ultrasonic irradiation.  相似文献   

5.
Combining the excellent features of halloysite nanoclay and cyclodextrin, a novel hybrid system was designed and synthesized based on covalent attachment of tosylated cyclodextrin to thiosemicarbazide‐functionalized halloysite nanoclay and used for the immobilization of Pd nanoparticles. The resulting hybrid, Pd@HNTs‐T‐CD, was then characterized using various techniques, and successfully used for promoting copper‐ and ligand‐free Sonogashira coupling reactions of halobenzenes and acetylenes in a mixture of water and ethanol. Notably, under Pd@HNTs‐T‐CD catalysis, the reaction could proceed in relatively short reaction time to furnish the corresponding products in high yields. Additionally, the catalyst was recyclable and could be simply recovered and reused for several reaction runs. Results also established negligible leaching of Pd, indicating the efficiency of HNTs‐T‐CD for embedding Pd nanoparticles.  相似文献   

6.
A novel heterogeneous catalyst is prepared through functionalization of halloysite nanotube with 1H‐1,2,3‐triazole‐5‐methanol and subsequent immobilization of silver nanoparticles through bio‐assisted approach using Arctiumplatylepis extract. The resulting catalyst, Ag@HNTs‐T, was characterized by using SEM/EDX, BET, XRD, FTIR, ICP‐AES, TGA, DTGA and elemental mapping analysis. Moreover, we computationally assessed metal‐ligand interactions in Ag@HNTs‐T complex model to interpret the immobilization behavior of silver nanoparticles on HNTs surface via quantum chemistry computations. The catalytic activity of the catalyst was studied for the synthesis of propargylamines via A3 and KA2 coupling reactions under ultrasonic irradiation. The results demonstrated that Ag@HNTs‐T could efficiently promote these reactions to furnish the corresponding products in high yields and short reaction times. The study of the recyclability of the catalyst and Ag(0) leaching confirmed that the catalyst was recyclability up to four reaction runs with slight Ag(0) leaching.  相似文献   

7.
Although noble metal nanocatalysts show superior performance to conventional catalysts, they can be problematic when balancing catalytic efficiency and reusability. In order to address this dilemma, we developed a smart paper transformer (s-PAT) to support nanocatalysts, based on easy phase conversion between paper and pulp, for the first time. The pulp phase was used to maintain the high catalytic efficiency of the nanocatalysts and the transformation to paper enabled their high reusability. Herein, as an example of smart paper transformers, a novel chromatography paper-supported Au nanosponge (AuNS/pulp) catalyst was developed through a simple water-based preparation process for the successful reduction of p-nitrophenol to demonstrate the high catalytic efficiency and reusability of the noble metal nanocatalyst/pulp system. The composition, structure, and morphology of the AuNS/pulp catalyst were characterized by XRD, TGA, FE-SEM, ICP, TEM, FT-IR, and XPS. The AuNS/pulp catalyst was transformed into the pulp phase during the catalytic reaction and into the paper phase to recover the catalysts after use. Owing to this smart switching of physical morphology, the AuNS/pulp catalyst was dispersed more evenly in the solution. Therefore, it exhibited excellent catalytic performance for p-nitrophenol reduction. Under optimal conditions, the conversion rate of p-nitrophenol reached nearly 100% within 6 min and the k value of AuNS/pulp (0.0106 s−1) was more than twice that of a traditional chromatography paper-based catalyst (0.0048 s−1). Additionally, it exhibited outstanding reusability and could maintain its high catalytic efficiency even after fifteen recycling runs. Accordingly, the unique phase switching of this smart paper transformer enables Au nanosponge to transform into a highly efficient and cost-effective multifunctional catalyst. The paper transformer can support various nanocatalysts for a wide range of applications, thus providing a new insight into maintaining both high catalytic efficiency and reusability of nanocatalysts in the fields of environmental catalysis and nanomaterials.

A smart paper transformer supported nanocatalyst platform is developed based on the facile phase conversion between paper and pulp for both high-efficiency and high-reusability catalysis, with wide applications demonstrated by using Au nanosponge.  相似文献   

8.
In this work, the design and synthesis of a heterogeneous catalyst based on functionalization of manganese ferrite nanoparticles encapsulated in a silica layer with Schiff base and subsequent incorporation of copper is presented. The fabricated hybrid material was characterized by employing Fourier-transform infrared spectroscopy, X-ray powder diffraction, field emission scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, differential thermal gravimetric analysis, vibrating sample magnetometry and inductively coupled plasma-optical emission spectrometry techniques. The prepared organic–inorganic hybrid material was successfully used as an efficient and recoverable catalyst for the synthesis of 1,4-dihydropyridines and N-arylquinolines under mild and green reaction conditions. The results showed that the catalyst exhibited excellent catalytic activity under optimum reaction conditions and the desired products were obtained in good to excellent yields. The new 1,4-dihydropyridines and N-arylquinolines were characterized by Fourier-transform infrared spectroscopy, 1H NMR and Elemental analysis of Carbon, Hydrogen and Nitrogen (CHN) analyses. Study of the catalyst reusability confirmed that the catalyst could be recycled for five reaction runs with slight loss of the catalytic activity and negligible copper leaching.  相似文献   

9.
刘莹  吕阳成  骆广生 《催化学报》2013,34(9):1635-1643
采用微流控技术结合悬浮聚合方法实现了百微米级含膦配体聚苯乙烯微胶囊的可控制备, 微胶囊尺寸在320~420 μm范围内可调, 且单分散性好. 扫描电子显微镜、能量散射光谱和电感耦合等离子发射光谱结果证实了其形貌和组成的均匀性及钯负载的可控性和有效性. 以溴代芳烃与苯硼酸的Suzuki偶联反应为模型反应评价了负载Pd(PPh3)4的百微米级微胶囊的催化性能, 发现其性能与文献报道的7~8 μm的同类催化剂微胶囊接近, 且均优于均相催化剂; 该催化剂经简单过滤后, 可实现多次循环使用, 未发现活性物种的流失. 该法实现了连续制备, 因而有助于提高制备的效率和可控性. 另外, 所制百微米级催化剂微胶囊在固定床反应器内具有较高催化剂浓度和机械性能, 且优于浆态床中使用的微米级催化剂微胶囊.  相似文献   

10.
Halloysite nanoclay, Hal, was amine-functionalized and subsequently reacted with 2,4,6-trichloro-1,3,5-triazine, TCT, and ethylenediamine, EDA, to provide multinitrogen containing functionality on the surface of Hal. The resulting surface-modified Hal, Hal-2N-TCT-EDA, was then used for immobilization of Pd nanoparticles and affording a heterogeneous catalyst, Pd@Hal-2N-TCT-EDA, with utility for copper and ligand-free Sonogashira coupling of alkynes and aryl halides. The results established the efficiency of this protocol in terms of product yield, ecofriendly nature, and reaction time. Study of the reusability of the catalyst confirmed that the catalyst could be recovered and recycled up to seven times with slight loss of catalytic activity and Pd leaching, indicating the efficiency of Hal-2N-TCT-EDA for embedding Pd nanoparticles. To elucidate the role of the number of surface nitrogens on the catalytic performance, the catalytic activity, and recyclability of the catalyst was compared with those of Hal-2N and Hal-2N-TCT. It was found that more surface nitrogen atoms gave higher loading of Pd and lower Pd leaching. This result confirms the contribution of surface nitrogens to anchor the Pd species and suppress leaching.

  相似文献   


11.
The synthesis, characterization, and evaluation of a Schiff base Cu (II) complex functionalized boehmite nanoparticles (Cu-complex-boehmite) as a new catalyst for oxidation of sulfides and thiols in the presence of hydrogen peroxide with complete selectivity and high conversion under solvent-free and mild reaction conditions were reported. Characterization of the catalyst was performed with various physicochemical methods. This effective catalyst was evaluated in terms of activity and reusability. It indicated high catalytic activity, good recoverability and reusability, and supplied the corresponding products in high yields and short reaction times. In addition, it shows notable advantages such as simplicity of operation, heterogeneous nature, easy work up, and it could be used at least eight times with no significant loss of its activity.  相似文献   

12.
The catalytic activity of a polymer-bound palladium Schiff base catalyst was investigated toward the reduction of aryl nitro compounds under ambient temperature and pressure. The dependence of the rate of hydrogenation of o-nitroaniline and o-nitrotoluene on substrate concentration, catalyst concentration and temperature has been determined. Based on the results obtained a plausible mechanism for the hydrogenation reaction is proposed and a rate expression is deduced. The energy and entropy of activation have been evaluated from the kinetic data. The polymer-bound catalyst was found to be better than its homogeneous analog PdCl2(NSBA) [NSBA = N-salicylidene benzylamine] for both stability and reusability. Recycling studies revealed that the catalyst could be used six times without metal leaching or significant loss in activity.  相似文献   

13.
Taking advantageous of both g‐C3N4 and magnetic core‐shell hollow spheres, for the first time a heterogeneous and magnetically separable hybrid system was prepared through a novel and simple hydrothermal procedure and used for immobilization of bio‐synthesized Ag(0) nanoparticles. The hybrid system was fully characterized by using SEM/EDS, FTIR, VSM, TEM, XRD, TGA, DTGA, ICP‐AES, BET and elemental mapping analysis. The catalytic utility of the obtained system, h‐Fe2O3@SiO2/g‐C3N4/Ag, for promoting ultrasonic‐assisted A3, KA2 coupling reactions and [3 + 2] cycloaddition has been confirmed. The results established that the catalyst could efficiently catalyze the reaction to afford the corresponding products in high yields in short reaction times. The reusability study confirmed that the catalyst could be recovered and reused for at least five reaction runs with only slight loss of the catalytic activity. The hot filtration test also proved low silver leaching, indicating the heterogeneous nature of the catalysis.  相似文献   

14.
Developing efficient and recyclable heterogeneous catalysts for organic reactions in water is important for the sustainable development of chemical industry. In this work, Pd nanoparticles supported on DABCO-functionalized porous organic polymer was successfully prepared through an easy copolymerization and successive immobilization method. Characterization results indicated that the prepared catalyst featured big surface area, hierarchical porous structure, and excellent surface amphiphilicity. We demonstrated the use of this amphiphilic catalyst in two case reactions, i.e. the aqueous hydrodechlorination and Suzuki-Miyaura coupling reactions. Under mild reaction conditions, the catalyst showed high catalytic activities for the two reactions. In addition, the catalyst could be easily recovered and reused for several times. Also, no obvious Pd leaching and aggregation of Pd nanoparticles occurred up during the consecutive reactions.  相似文献   

15.
将有机卤素季铵盐以硅烷化键合方式嫁接到钛硅分子筛上,制备了兼备催化氧化烯烃合成环氧化物和环氧化物碳酸酯化反应的新型双功能催化剂,考察了其在丙烯、过氧化氢和二氧化碳一步合成碳酸丙烯酯的催化性能.研究表明,具有大外表面积的层剥离的钛硅分子筛是一种嫁接季铵盐合适的载体,丙基三丁基卤化铵是酯化催化性能优良的功能化基团,两者的偶合使一步法催化丙烯环氧化酯化合成碳酸丙烯酯的收率达48%.该催化剂具有较好的稳定性和重复使用性能.  相似文献   

16.
A novel immobilization technique for Sc(OTf)3, a polymer-micelle incarcerated (PMI) method, has been developed. PMI Sc(OTf)3 is highly active in several fundamental carbon-carbon bond-forming reactions. The catalyst is recovered quantitatively by simple filtration and reused several times without loss of catalytic activity, and no Sc leaching was observed in all reactions (<0.1 ppm). In addition, several solvents are available, and these aspects are suitable for high-throughput organic synthesis (HTOS). To the best of our knowledge, this is the first example of immobilization of Lewis acids utilizing polymer micelles.  相似文献   

17.
The Suzuki coupling was carried out using a new, efficient and reusable polymer-supported Pd/IL catalyst (PEt@IL/Pd) under aqueous conditions. This catalyst was prepared through coacervation approach followed by treatment with Pd(OAc)2. The FT-IR, SEM, TGA, TEM, XPS, ICP and EDX techniques were employed to characterize the PEt@IL/Pd. This catalyst exhibited high activity in the Suzuki coupling reaction under green conditions. Moreover, the catalyst could be recycled and reapplied for six times with no appreciable loss in its activity. The leaching test also showed high stability of catalytic Pd species under applied conditions.  相似文献   

18.
An imidazole modified mesoporous material has been prepared through a co-condensation procedure and adopted to covalently anchor chiral Mn(III) salen complex. The active centers in the as-synthesized catalyst were presented in the form of ionic species. The results of XRD, FTIR, DRUV-Vis, and N2 sorption confirmed the successful immobilization of chiral Mn(III) salen complex inside the channels of the modified support and the maintenance of the mesoporous structure of parent support in the immobilized catalyst. This heterogeneous catalyst exhibited comparable catalytic activity and enantioselectivity to those of the homogeneous counterpart in the asymmetric epoxidation of unfunctionalized olefins. Furthermore, notably high turnover frequencies have been obtained over this heterogeneous catalyst for the relatively short reaction time and low catalyst amount, due in part to the ionic property as well as the uniform distribution of the active centers.  相似文献   

19.
The magnetic core of manganese ferrite (MnFe2O4) nanoparticles has a significant stability in comparison with ferrite (Fe3O4) nanoparticles. The unique supramolecular properties of β‐cyclodextrin (β‐CD), such as hydrophobic cavity, hydrophilic exterior and ‐OH functional groups, make it a good candidate for functionalization and catalytic application. So, a surface‐modified magnetic solid support with the Cu (II)‐β‐CD complex was prepared. The structure of nanoparticles was characterized by Fourier transform‐infrared spectroscopy, X‐ray powder diffraction, thermogravimetric analysis, vibrating‐sample magnetometry, inductively coupled plasma‐optical emission spectrometry and scanning electron microscope analyses. The catalytic activity of these nanoparticles was investigated in the synthesis of spiropyrans and high yields of desired products obtained under green media. Some advantages of this novel catalyst for this reaction are high yields, short reaction times, green solvent and conditions, easy workup procedure, negligible copper leaching, reusability without a significant diminish in catalytic efficiency, and simple separation of nanocatalyst by using an external magnet alongside the environmental compatibility and sustainability.  相似文献   

20.
Porous organic polymer has recently attracted tremendous interest because of its potential to combine the best features of homogeneous and heterogeneous catalysts. In this study, copper supported on phenanthroline-functionalized porous polymer (Cu@PCP-Phen) was prepared by a co-polymerization method and used as a heterogeneous catalyst for dimethyl carbonate synthesis via the oxidative carbonylation of methanol. The catalyst was characterized by N2 adsorption, scanning electron microscopy, transmission electron microscopy, 13C solid-state nuclear magnetic resonance, and X-ray photoelectron spectroscopy, which suggested that it possessed a big surface area, hierarchical porous structure, and strong electron-donating effect toward copper species. The Cu@PCP-Phen catalyst showed high catalytic activity, which was significantly higher than those achieved with Cu-based catalysts under similar reaction conditions. In addition, the catalyst can be easily separated and reused at least six times with only a slight decrease in activity. The salient features of this protocol are the simplicity in handling of the catalyst, high catalytic activity, excellent selectivity, low copper leaching, and good catalyst recyclability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号