首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
A sensitive, rapid and reproducible LC–MS/MS method for the determination of olmesartan (OLM), amlodipine (ALM) and hydrochlorothiazide (HCZ) in rat plasma and urine has been developed and validated. Irbesartan (IRB) was used as an internal standard. The analytes were separated on a Waters XTerra-C18 column using gradient elution with acetonitrile and 10 mM ammonium acetate buffer (pH 3.5, adjusted with acetic acid) at a flow rate of 1.0 mL min?1. The three analytes were ionized by positive ion electrospray using multiple-reaction monitoring (MRM) mode to monitor precursor?→?product ion transitions m/z 447.31?→?234.97 for OLM, 408.87?→?238.18 for AML and 290.1?→?204.85 for HCZ. The specificity, matrix effect, recovery, sensitivity, linearity, accuracy, precision, and stabilities were all validated over the concentration range 0.4–100 ng mL?1 for AML, 0.2–100 ng mL?1 for OLM, 0.1–100 ng mL?1 for HCZ. The mean concentrations (Cmax) are 10.32, 587, and 3.4 for OLM, ALM, and HCZ, respectively, by the oral administration of 15 mg kg?1 of each analyte.  相似文献   

2.
Resource utilization is a critical pathway for sustainable solid waste treatment. Biochar was prepared from the co-pyrolysis of sewage sludge and tea waste. Brunauer–Emmett–Teller measurement, scanning electron microscopy and Fourier transform infrared analysis were employed to characterize the biochar. Then, the interface behavior between biochar and Cd from aqueous solution was investigated. The effect of adsorbent dose and pH on Cd adsorption was evaluated. Adsorption kinetics and the adsorption isotherm were studied, and the adsorption mechanism was explored. The results showed that the suitable adsorbent dose was 4 g L?1 and the optimal pH of the Cd solution remained at 6.0. Cadmium sorption on the biochar could be well described by the pseudo-second order kinetic model (R 2 > 0.98). The adsorption process was described using the Langmuir (R 2 > 0.86), Freundlich (R 2 > 0.86), Temkin (R 2 > 0.84) and Dubinin–Radushkevich (R 2 > 0.86) isotherm models. The proportion of organic constituents in biochar was 69.2–72.4%. Minerals that originated in biochar played an important role during the Cd adsorption process, and the contribution of minerals accounted for 27.6–30.8% of the total adsorption. The main mechanism of the Cd adsorption process by biochar involved ion exchange, surface complexation, electrostatic interaction, surface co-precipitation, and other mechanisms. Therefore, biochar created by the co-pyrolysis of sewage sludge and tea waste could be used as an adsorbent for the removal of metal ions from contaminated water.  相似文献   

3.
Since cultivations of Arthrospira platensis have a high water demand, it is necessary to develop treatment methods for reusing the exhausted medium that may prevent environmental problems and obtaining useful biomass. The exhausted Schlösser medium obtained from A. platensis batch cultivation in bench-scale mini-tanks was treated by varying concentrations of different coagulants, ferric chloride (6, 10, and 14 mg L?1) or ferric sulfate (15, 25, and 35 mg L?1) and powdered activated carbon (PAC, 30 and 50 mg L?1). Such treated effluent was restored with NaNO3 and reused in new cultivations of A. platensis performed in Erlenmeyer flasks. Reusing media through the cultivation of A. platensis showed satisfactory results, particularly in the medium treated with ferric chloride and PAC. The maximum cell concentration obtained in the flasks was 1093 mg L?1, which corresponded to the medium treated with ferric chloride (6 mg L?1) and PAC (30 mg L?1). This cellular growth was higher than in the medium treated with ferric sulfate and PAC, in which values of maximum cell concentration did not exceed 796 mg L?1. The cultures in the media after treatment did not modify the biomass composition. Thus, combined coagulation/adsorption processes, commonly used in water treatment processes, can be efficient and viable for treating exhausted medium of A. platensis, allowing the production of such biomass with the reduction of production cost and saving water.  相似文献   

4.
This study proposes, verifies, and refines the use of biopolymers treated with two new ionic liquids (ILs) (sec-butylammonium acetate and n-octylammonium acetate), as a platform for chromium adsorption. The ILs were synthesized, characterized, and applied to chitosan treatment. Analyzing the size distribution of microparticles of chitosan and chitosan activated with ILs (sec-butylammonium acetate and n-octylammonium acetate), we observed that a little decrease in the particle size occurred with the activation of chitosan (176 ± 0.02 μm to 167 ± 0.054 and 168.5 ± 0.05 μm, respectively), as well as changes in the X-ray diffraction FTIR_ATR spectra. Further studies were performed using the best adsorbent – chitosan treated with sec-butylammonium acetate. In this case, the chromium VI concentration in the sample was reduced by more than 99% when using chitosan treated with IL sec-butylammonium acetate. The best reaction time was determined as 1 h, which allowed a chromium adsorption of 99.1% and the adsorption kinetic data were best represented by the second-order model (k2 = 11.7258 g mg?1 min?1). The maximum adsorption capacity was obtained using the Langmuir isotherm model (20.833 mg g?1 at pH 4 during 1 h, using 1.0 g of chitosan), and the adsorption efficiency was enhanced at 25 °C by the Freundlich isotherm model, in which the constants KF and n were determined as 0.875 mg L?1 and 1.610, respectively.  相似文献   

5.
In this study, radiocesium sorption on ceramic clay was investigated as a function of particle size and initial 137Cs concentration using a batch method. Ceramic clay samples taken from the Sö?üt(?nisar) clay deposit were composed of kaolinite, dickite and quartz. The equilibrium time and the liquid–solid ratio were determined as 60 min and 250 mL g?1, respectively. The distribution coefficients (K d) for variable liquid–solid ratio and the percentage adsorption (P Ad) were calculated. The values of K d and P Ad ranged from 483 to 3165 mL g?1 and 34–93%, respectively. The K d and P Ad values increased with increasing particle size, but decreased with increasing initial concentration. The sorption data were interpreted in terms of a Langmuir isotherm. The results indicated that the Sö?üt(?nhisar) ceramic clay has good sorption capacity for cesium.  相似文献   

6.
A stability-indicating UPLC method was developed for quantitative determination of 9-desmethyl-α-dihydrotetrabenazine (9-DM-α-DTBZ), the precursor for preparing a widely used vesicular monoamine transporter 2 imaging agent 11C-α-DTBZ. Compound 9-DM-α-DTBZ was subjected to various stress conditions consisting of acidic, alkaline, oxidative, thermal and photolytic forced degradation. The decomposition of 9-DM-α-DTBZ was observed under oxidative condition, whereas no obvious degradation was shown under the other stress conditions. For chromatographic separation of 9-DM-α-DTBZ and its degradation products, an Acquity UPLC BEH C18 column (2.1 × 100 mm, 1.7 μm) and a mobile phase of 20:80 (v/v) methanol/ammonium acetate buffer (pH 4.5, 10 mM) were used. Quantitative determination of 9-DM-α-DTBZ was performed using a PDA detector at a flow rate of 0.30 mL min?1. UPLC–MS analysis was further utilized to characterize the two degradation products. The proposed method was fully validated as per USP guidelines with respect to linearity, accuracy, precision, robustness, limit of detection (LOD) and limit of quantification (LOQ). The linear regression analysis showed a good linear relationship (r 2  = 0.9995) in the concentration range of 0.001–1.00 mg mL?1 (n = 6). The assay method was found to have good precision (1.14–1.35% RSD) and recovery (98.91–101.23%). Additionally, the LOD and LOQ of 9-DM-α-DTBZ were 0.30 and 1.00 μg mL?1, respectively. These results indicated that the present method could be used to evaluate the quality of regular production samples and also used in stability assays.  相似文献   

7.
The utilization of carbonaceous materials in separation processes of radionuclides, heavy metals and metalloids represents a burning issue in environmental and waste management. The main objective of this study was to characterize the effect of chemical modification of corncob-derived biochar by Fe-impregnations on sorption efficiency of Eu and As as a model compounds of cationic lanthanides and anionic metalloids. The biochar sample produced in slow pyrolysis process at 500 °C before (BC) and after (IBC) impregnation process was characterized by elemental, FTIR, SEM-EDX analysis to confirm the effectiveness of Fe-impregnation process. The basic physico-chemical properties showed differences in surface area and pH values of BC- and IBC-derived sorbents. Sorption processes of Eu and As by BC and IBC were characterized as a time- and initial concentration of sorbate-dependent processes. The sorption equilibrium was reached for both sorbates in 24 h of contact time. Batch equilibrium experiments revealed the increased maximum sorption capacities (Q max) of IBC for As about more than 20 times (Q max BC 0.11 and Q max IBC 2.26 mg g?1). Our study confirmed negligible effect of Fe-impregnation on sorption capacity of biochar for Eu (Q max BC 0.89 and Q max IBC 0.98 mg g?1). The iron-impregnation of biochar-derived sorbents can be utilized as a valuable treatment method to produce stable and more effective sorption materials for various xenobiotics separation from liquid wastes and aqueous solutions.  相似文献   

8.
Bacillus vallismortis and Bacillus mojavensis were loaded onto Amberlite XAD-4 resin and used for solid phase extraction (SPE) of uranium(VI). A quick and simple UV–Vis spectrophotometric method was used to determine U(VI) ion. The best experimental conditions were determined as being a pH of 5.0; a sample flow rate of 2.0 mL min?1; 200.0 mg of biosorbent; 800 mg of Amberlite XAD-4, and 5.0 mL of 1 mol L?1 HCl as desorption solution for both immobilized bacteria. The preconcentration factors were achieved as 80 for both solid phase extractor. The developed methods were validated by applying to reference water and tea samples.  相似文献   

9.
A sensitive and accurate liquid chromatographic method for the determination of AR-42 enantiomeric purity has been developed and validated. Baseline separation with a resolution higher than 1.9 was accomplished within 10 min using a CHIRALPAK AD column (250 mm × 4.6 mm; particle size 5 μm) and n-hexane/2-propanol/diethylamine (75:25:0.1 v/v/v) as mobile phase at a flow rate of 1 mL min?1. Eluted analytes were monitored by UV absorption at 260 nm. The effects of mobile phase components, temperature and flow rate on enantiomeric selectivity and resolution of enantiomers were investigated. Calibration curves were plotted within the concentration range between 0.001 and 0.5 mg mL?1 (n = 10), and the recoveries between 98.23 and 101.87% were obtained, with relative standard deviation lower than 1.31%. Limit of detection and limit of quantitation for AR-42 were 0.39 and 1.28 μg mL?1 and for its enantiomer were 0.36 and 1.19 μg mL?1, respectively. It was demonstrated that the developed method was accurate, robust and sensitive for the determination of enantiomeric purity of AR-42, especially for the analysis of bulk samples.  相似文献   

10.
This work aimed to characterize two native microalgal strains newly isolated from South Mediterranean areas and identified as Chlorella sorokiniana ES3 and Neochloris sp. AM2. The growth properties and biochemical composition of these microalgae were evaluated in different culture media (Algal, BG-11, f/2, and Conway). Among the tested media, nitrate- and phosphate-rich Algal medium provided the maximum biomass productivities (85.5 and 111.5 mg l?1 day?1 for C. sorokiniana and Neochloris sp., respectively), while the nitrate- and phosphate-deficient f/2 medium resulted in the highest lipid productivities (24.1 and 35.8 mg l?1 day?1 for C. sorokiniana and Neochloris sp., respectively). The physiological state of both microalgae was investigated under different light and temperature levels using the pulse amplitude-modulated fluorometry. The better photosynthetic efficiency of C. sorokiniana was obtained at 23 °C with a light saturation of 156 μE m?2 s?1, while that of Neochloris sp. was achieved at 15 °C with a light saturation of 151 μE m?2 s?1. The analysis of fatty acid profile and biodiesel parameters revealed that C. sorokiniana, cultivated in Algal and f/2 media, can be considered as a suitable candidate for high-quality biodiesel production.  相似文献   

11.
12.
5A zeolites were facilely synthesized from attapulgite clay and sodium aluminate precursors. The optimum synthesis condition for 4A zeolite (Na-form) were H2O/attapulgite ratio of 40:1 volume/mass, NaOH/attapulgite mass ratio of 2.35:1, the crystallization time was 4 h at 80–85 °C. The 4A zeolite was converted to related 5A zeolite (Ca-form) through ionic exchanges using calcium chloride solution with the Si/Al mole ratio of 1.3. SEM images demonstrated that as-synthesized 5A zeolites are ordered cubic crystals, average crystals length dimension is 1–2 μm. And the zeolites product had a specific surface area of 482 m2 g?1 and total pore volume of 0.274 cm3 g?1. The static adsorption experiments showed that the equilibrium adsorption capacities of n-decane and n-pentadecane on produced 5A zeolite were 0.253 and 0.510 g g?1, respectively. And the adsorption equilibrium time of n-decane and n-pentadecane on 5A zeolite were 45 and 60 min, respectively. The experimental adsorption data of n-decane and n-pentadecane on three zeolites could be properly fitted by the Langmuir–Freundlich isotherm model.  相似文献   

13.
Isochrysis is a genus of marine algae without cell wall and capable of accumulating lipids. In this study, the lipid production potential of Isochrysis was assessed by comparing 15 Isochrysis strains with respect to their growth rate, lipid production, and fatty acid profiles. Three best strains were selected (lipid productivity, 103.0~121.7 mg L?1 day?1) and their lipid-producing capacities were further examined under different controlled parameters, e.g., growth phase, medium nutrient, and light intensity in laboratory cultures. Furthermore, the three Isochrysis strains were monitored in outdoor panel photobioreactors with various initial cell densities and optical paths, and the strain CS177 demonstrated the superior potential for outdoor cultivation. A two-stage semi-continuous strategy for CS177 was subsequently developed, where high productivities of biomass (1.1 g L?1 day?1) and lipid (0.35 g L?1 day?1) were achieved. This is a comprehensive study to evaluate the lipid-producing capability of Isochrysis strains under both indoor and outdoor conditions. Results of the present work lay a solid foundation for the physiological and biochemical responses of Isochrysis to various conditions, shedding light on the future utilization of this cell wall-lacking marine alga for biofuel production.  相似文献   

14.
Recombinant Escherichia coli cells harboring nitrilase from Alcaligenes faecalis were immobilized using tris(hydroxymethyl)phosphine (THP) as the coupling agent. The optimal pH and temperature of the THP-immobilized cells were determined at pH 8.0 and 55 °C. The half-lives of THP-immobilized cells measured at 35, 40, and 50 °C were 1800, 965, and 163 h, respectively. The concentration of R-mandelic acid (R-MA) reached 358 mM after merely 1-h conversion by the immobilized cells with 500 mM R,S-mandelonitrile (R,S-MN), affording the highest productivity of 1307 g L?1 day?1 and the space-time productivity of 143.2 mmol L?1 h?1 g?1. The immobilized cells with granular shape were successfully recycled for 60 batches using 100 mM R,S-MN as substrate at 40 °C with 64% of relative activity, suggesting that the immobilized E. coli cells obtained in this study are promising for the production of R-MA.  相似文献   

15.
For many years, the traditional process of gardenia yellow pigment extraction has produced wastewater containing significant quantities of Geniposidic acid (GSA), a substance that could be put to pharmacological uses if it could be effectively recovered. This study aimed to provide an efficient adsorption material, D08, for recycling GSA. Batch experiments showed that adsorption capacity depends on initial concentration and temperature. The maximal adsorption capacity of GSA onto an anionic exchanger reached 310 mg/g. The pK a value of GSA was determined to be 4.21. Pore diffusion coefficients (D p) of GSA for 283, 298 and 313 K were 3.274 × 10?10, 5.069 × 10?10 and 7.356 × 10?10 m2/s, respectively. Recovery efficiency of GSA was achieved to 99.81 %. In comparison with pseudo first-order and pseudo second-order equations, the PDM model demonstrated the best fit to the kinetics data of GSA adsorption. Adsorption/desorption experiments proved that D08 offers great adsorption capacity, high adsorption rate and good repeatability. In order to help us to accurately comprehend the mass transfer process, numerical simulation and post-processing to variables c(r, t) and q(r, t) were performed to clarify the adsorption process.  相似文献   

16.
This paper presents a chemometrics-assisted optimization study to improve the separation of tocopherol (-T) and tocotrienol (-TT) homologues on a C30 stationary phase in reversed-phase HPLC. The HPLC settings were optimized using a central composite design and the response surface methodology. Flow rate, column temperature, and mobile phase composition were chosen as independent variables. Peak resolution (Rs), analysis time (tR), and peak symmetries of the tocopherol isomers were chosen as response variables. Optimum performance in terms of Rs was obtained at a flow rate of 0.31 mL min?1, a temperature of 8.70 °C, and % B content (methyl tert-butyl ether: methanol: water, 80:18:2, v/v/v) in the mobile phase of 38.12%. The analysis of variance and regression analysis gave adjusted R2 values of 0.9841 for Rs, 0.9850 for tR-(α-T), 0.9853 for tR-(β-T), and 0.9204 for the peak symmetry of β-T. This confirms the good agreement of experimental data with predicted values. The close eluting peaks of β-/γ-tocol could be baseline separated at the optimized conditions at a minimized analysis time. Empirical second-order polynomial models were derived that gave statistically high significances (P?<?0.0001). Hence, the models can be successfully employed to predict the optimum separation conditions of co-eluting peaks of β-/γ-tocols. The optimized method was successfully applied to determine the individual tocol homologues in various cold pressed edible oils. Total contents ranged from 15 to almost 2600 mg tocol kg?1 oil.  相似文献   

17.
In pursuit of improving performance of the methylene blue adsorption process, the potential of a novel 4A-zeolite/polyvinyl alcohol (PVA) membrane adsorbent was investigated. Adding 4A-zeolite particles to the PVA membrane adsorbent provided an effective structure for the adsorptive membrane in dye removal processes. Effect of zeolite content was also studied via synthesis of different mixed matrix membrane adsorbents (MMMAs) with 5, 10, 15, and 20 wt% 4A-zeolite content. Morphology of MMMAs was analyzed by scanning electron microscope and the intermolecular interactions were determined by Fourier transform infrared spectroscopy. X-ray diffraction was performed to determine the crystal structure of MMMAs. For the sake of finding optimum condition, the adsorption capacity was examined at various operating parameters, such as contact time, temperature, pH, and initial concentration. The maximum value of the adsorption capacity (q e) of 41.08 mg g?1 and the highest removal efficiency of 87.41 % were obtained by applying 20 wt% loading of 4A-zeolite. The experimental data were fitted well with the Freundlich adsorption isotherm model (R 2 = 0.9917) compared with the Langmuir (R 2 = 0.9489) and the Tempkin (R 2 = 0.8886) adsorption isotherm models, and the adsorption kinetic data verified the best fitting with the pseudo-second-order model (R 2 = 0.9999). The estimated data for Gibb’s free energy (ΔG°) showed that the adsorption process is spontaneous at lower temperature values and non-spontaneous at higher temperature values. Other evaluated thermodynamic parameters such as changing in enthalpy (ΔH°) and entropy (ΔS°) revealed that the adsorption process is exothermic with an increase in orderliness at the solid/solution interface.  相似文献   

18.
The removal of uranium from aqueous solution by hydromagnesite and its calcination products was investigated. Through the study, we found that the adsorption capacities of hydromagnesite, magnesium carbonate and magnesium oxide for uranium could reach 342.96, 493.79, 2154.14 mg g?1, respectively. The high temperature will reduce the activity of magnesium oxide, resulting in the adsorption capacity decrease. The results indicate that the optimum pH for the heat-treated samples was 3.0–4.5 and for hydromagnesite 6.0–7.0. Thermodynamic parameters such as ?G, ?H and ?S, indicated that the adsorption processes are spontaneous and endothermic.  相似文献   

19.
Silver nanoparticles (Ag NPs) were prepared by a green synthesis process, using Trichodesma indicum (T. indicum) leaf extract at different (5, 10 and 15 mL) concentrations. The formation of Ag NPs was confirmed by UV–Vis spectrophotometry with surface plasmon resonance at 443 nm. After this confirmation, the influence of leaf extract concentrations on the structural and surface morphological properties was studied. Along with their physical properties, antibacterial activity against pathogenic (B. cereus and E. coli) bacteria and photocatalytic de-colorization of methylene blue (MB) were examined. The XRD studies revealed that all the nanoparticles exhibited preferential orientation along the (111) plane of silver. The crystallite size decreases as the extract concentration is increased. From SEM images, it was found that the particles are spherical in shape and the size of the particles decreased drastically when the leaf extracts concentration is greater than 10 mL. The images strongly support the result observed from the SEM studies. FT-IR analysis showed that the plant compounds are involved in the reduction of Ag+ ions to Ag0. Ag NPs synthesized in 15 mL of leaf extract greatly resist the growth of both species and decomposed 82% of MB within 210 min. This ability of Ag NPs can be due to the small spherical-shaped particles and larger Ag+ ion release.  相似文献   

20.
Adsorption and recovery of uranium by nanoporous MCM-41 from aqueous solutions (synthetic solution and uranium conversion facility liquid waste) were investigated by use of a fixed-bed column (1.2 cm diameter and 3.0 cm height). Adsorption was carried out at flow rates 0.2 and 0.5 mL min?1, which correspond to retention times of 10 and 6 min. The maximum breakthrough capacity for uranium ions was achieved by use of nanoporous MCM-41 at the optimum pH of 3.6 and flow rate 0.2 mL min?1 (61.95 μg g?1). The Thomas and Yan models were applied to the experimental data, by use of linear regression, to determine the characteristics of the column for process design. The breakthrough curves calculated from the models were in good agreement with the experimental data. The elution behavior of uranium on nanoporous MCM-41 was studied with different eluents; the results showed that 0.1 M HCl is good eluent for uranium recovery. The regenerated column could be used in a multitude of adsorption–desorption cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号