首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The results of laboratory observations of the deformation of deep water gravity waves leading to wave breaking are reported. The specially developed visualization technique which was used is described. A preliminary analysis of the results has led to similar conclusions than recently developed theories. As a main fact, the observed wave breaking appears as the result of, first, a modulational instability which causes the local wave steepness to approach a maximum and, second, a rapidly growing instability leading directly to the breaking.List of symbols L total wave length - H total wave height - crest elevation above still water level - trough depression below still water level - wave steepness =H/L - crest steepness =/L - trough steepness =/L - F 1 forward horizontal length from zero-upcross point (A) to wave crest - F 2 backward horizontal length from wave crest to zero-downcross point (B) - crest front steepness =/F 1 - crest rear steepness =/F 2 - vertical asymmetry factor=F 2/F 1 (describing the wave asymmetry with respect to a vertical axis through the wave crest) - µ horizontal asymmetry factor=/H (describing the wave asymmetry with respect to a horizontal axis: SWL) - T 0 wavemaker period - L 0 theoretical wave length of a small amplitude sinusoïdal wave generated at T inf0 sup–1 frequency - 0 average wave height  相似文献   

2.
The results of the hydraulic studies of gas-liquid media, wave processes in two-phase media and critical phenomena are described. Some methodological foundations to describe these media and methods to obtain the basic similarity criteria for the hydraulics and gas-dynamics of bubble suspensions are discussed. A detailed consideration is given for the phase transition processes on interfaces and the interface stability. A relation has been revealed between the wave and critical phenomena in two-phase systems.Nomenclature a thermal diffusivity - Ar Archimedes number - B gas constant - C heat capacity - C p heat capacity at constant pressure - C v heat capacity at constant volume - c 0 acoustic velocity in the mixture - c l acoustic velocity in the liquid - C f flow resistance coefficient - G mass rate of flow - g gravitational acceleration - L latent heat of evaporation - l initial perturbation width - M Mach number - Nu Nusselt number - P pressure - Pr Prandtl number - R bubble radius - (3P 0/R 0 2 f )–1 bubble resonance frequency square - T temperature - U medium motion velocity - W heavy phase velocity - W light phase velocity - We Weber number - heat release coefficient - dispersion coefficient - void fraction - adiabatic index - film thickness - dimensionless film thickness - kinematic viscosity coefficient - dynamical viscosity coefficient - dissipation coefficient in the mixture - dispersion parameter - f liquid phase density - light phase density - heat conductivity - surface tension - frequency, 0 2 =3P 0/ f R 0 2  相似文献   

3.
In this paper we continue the geometrical studies of computer generated two-phase systems that were presented in Part IV. In order to reduce the computational time associated with the previous three-dimensional studies, the calculations presented in this work are restricted to two dimensions. This allows us to explore more thoroughly the influence of the size of the averaging volume and to learn something about the use of anon-representative region in the determination of averaged quantities.

Nomenclature

Roman Letters A interfacial area of the interface associated with the local closure problem, m2 - a i i=1, 2, gaussian probability distribution used to locate the position of particles - l unit tensor - characteristic length for the-phase particles, m - 0 reference characteristic length for the-phase particles, m - characteristic length for the-phase, m - i i=1,2,3 lattice vectors, m - m convolution product weighting function - m V special convolution product weighting function associated with a unit cell - n i i=1, 2 integers used to locate the position of particles - n unit normal vector pointing from the-phase toward the-phase - r p position vector locating the centroid of a particle, m - r gaussian probability distribution used to determine the size of a particle, m - r 0 characteristic length of an averaging region, m - V averaging volume, m3 - V volume of the-phase contained in the averaging volume,V, m3 - x position of the centroid of an averaging area, m - x 0 reference position of the centroid of an averaging area, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters V /V, volume average porosity - a i standard deviation ofa i - r standard deviation ofr - intrinsic phase average of   相似文献   

4.
McAdams  J. E.  Williams  M. C. 《Rheologica Acta》1986,25(2):102-109
Theta solvents for polystyrene are prepared from high-viscosity blends of styrene and low-molecular-weight polystyrene, and then used to make dilute solutions with monodisperse polystyrene solutes of high-M = 2.3, 6.0, 9.0, 18.0 · 105. A Weissenberg rheogoniometer is used to measure the non-Newtonian viscosity as a function of shear stress, for low values, and also the complex viscosity components and as functions of frequency. A capillary viscometer is used for high- measurements of(). Viscometric properties, at room temperature, are analyzed as functions of high-molecular-weight solute concentrationc with parameters of constant or to obtain [()], [ ()], and [ ()]. Such a collection of data has apparently not previously been available for polymers in theta solvents (in which Gaussian chain statistics prevail). Also unique is the achievement of high stress ( = 2 104 Pa) at low shear rate, by virtue of high solvent viscosity which is not characteristic of other known theta solvents.  相似文献   

5.
In this paper we consider the asymptotic behavior of solutions of the quasilinear equation of filtration as t. We prove that similar solutions of the equation u t = (u )xx asymptotically represent solutions of the Cauchy problem for the full equation u t = [(u)]xx if (u) is close to u for small u.  相似文献   

6.
We find the asymptotic behavior of the homogenized coefficients of elasticity for the chess-board structure. In the chess board white and black cells are isotropic and have Lamé constants (, ,) and (, ) respectively. We assume that the black cells are soft, so 0. It turns out that the Poisson ratio for this composite tends to zero with .  相似文献   

7.
The effective length method [1, 2] has been used to make systematic calculations of the heat transfer for laminar and turbulent boundary layers on slender blunt-nosed cones at small angles of attack ( + 5° in a separationless hypersonic air stream dissociating in equilibrium (half-angles of the cones 0 20°, angles of attack 0 15°, Mach numbers 5 M 25). The parameters of the gas at the outer edge of the boundary layer were taken equal to the inviscid parameters on the surface of the cones. Analysis of the results leads to simple approximate dependences for the heat transfer coefficients.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 173–177, September–October, 1981.  相似文献   

8.
Zusammenfassung Das instationÄre Temperaturfeld oberhalb einer waagerechten, mit konstanter Wärmestromdichte beheizten Platte in verschiedenen Flüssigkeiten wurde experimentell untersucht. —Die Versuche haben ergeben, da\ sich das Einsetzen der InstabilitÄt (Konvektionsbeginn) durch eine Kenngrö\eK=gq 0 kr 2 /c p beschreiben lÄ\t. Hierin istg die lokale Fallbeschleunigung, der isobare thermische Ausdehnungskoeffizient, die dynamische ViskositÄt,c p die isobare spezifische WärmekapazitÄt,q 0 die Wärmestromdichte und kr die kritische Zeit, das ist der Zeitabschnitt zwischen dem Einschalten der Heizung und dem ersten Einsetzen der Konvektion.
The onset of convection in a horizontal fluid layer heated from below
The unsteady temperature field on the upper side of a horizontal plate heated with constant heat flux is experimentally studied in different fluids. The beginning of the instability (onset of convection) can be described by a dimensionless number given asK=gq 0 kr 2 /c p whereg is the local gravitational acceleration, the expansion coefficient at constant pressure,q 0 the heat flux, kr the critical time, namely the time interval between the starting of heating and the onset of convection.
  相似文献   

9.
Summary TheCross equation describes the flow of pseudoplastic liquids in terms of an upper and a lower Newtonian viscosity corresponding to infinite and zero shear, and 0, and of a third material constant related to the mechanism of rupture of linkages between particles in the intermediate, non-Newtonian flow regime, Calculation of of bulk polymers is important, since it cannot be determined experimentally. The equation was applied to the melt flow data of two low density polyethylenes at three temperatures.Using data in the non-Newtonian region covering 3 decades of shear rate to extrapolate to the zero-shear viscosity resulted in errors amounting to about onethird of the measured 0 values. The extrapolated upper Newtonian viscosity was found to be independent of temperature within the precision of the data, indicating that it has a small activation energy.The 0 values were from 100 to 1,400 times larger than the values at the corresponding temperatures.The values of were large compared to the values found for colloidal dispersions and polymer solutions, but decreased with increasing temperature. This shows that shear is the main factor in reducing chain entanglements, but that the contribution of Brownian motion becomes greater at higher temperatures.
Zusammenfassung Die Gleichung vonCross beschreibt das Fließverhalten von pseudoplastischen Flüssigkeiten durch drei Konstante: Die obereNewtonsche Viskosität (bei sehr hohen Schergeschwindigkeiten), die untereNewtonsche Viskosität 0 (bei Scherspannung Null), und eine Materialkonstante, die vom Brechen der Bindungen zwischen Partikeln im nicht-Newtonschen Fließbereich abhängt. Die Berechnung von ist wichtig für unverdünnte Polymere, wo man sie nicht messen kann.Die Gleichung wurde auf das Fließverhalten der Schmelzen von zwei handelsüblichen Hochdruckpolyäthylenen bei drei Temperaturen angewandt. Die Werte von 0, durch Extrapolation von gemessenen scheinbaren Viskositäten im Schergeschwindigkeitsbereich von 10 bis 4000 sec–1 errechnet, wichen bis 30% von den gemessenen 0-Werten ab. Die Aktivierungsenergie der war so klein, daß die-Werte bei den drei Temperaturen innerhalb der Genauigkeit der Extrapolation anscheinend gleich waren. Die 0-Werte waren 100 bis 1400 mal größer als die-Werte.Im Verhältnis zu kolloidalen Dispersionen und verdünnten Polymerlösungen war das der Schmelzen groß, nahm aber mit steigender Temperatur ab. Deshalb wird die Verhakung der Molekülketten hauptsächlich durch Scherbeanspruchung vermindert, aber der Beitrag derBrownschen Bewegung nimmt mit steigender Temperatur zu.
  相似文献   

10.
In this work we consider transport in ordered and disordered porous media using singlephase flow in rigid porous mediaas an example. We defineorder anddisorder in terms of geometrical integrals that arise naturally in the method of volume averaging, and we show that dependent variables for ordered media must generally be defined in terms of thecellular average. The cellular average can be constructed by means of a weighting function, thus transport processes in both ordered and disordered media can be treated with a single theory based on weighted averages. Part I provides some basic ideas associated with ordered and disordered media, weighted averages, and the theory of distributions. In Part II a generalized averaging procedure is presented and in Part III the closure problem is developed and the theory is compared with experiment. Parts IV and V provide some geometrical results for computer generated porous media.Roman Letters A interfacial area of the- interface contained within the macroscopic region, m2 - Ae area of entrances and exits for the-phase contained within the macroscopic system, m2 - g gravity vector, m/s2 - I unit tensor - K traditional Darcy's law permeability tensor, m2 - L general characteristic length for volume averaged quantities, m - characteristic length (pore scale) for the-phase - (y) weighting function - m(–y) (y), convolution product weighting function - v special weighting function associated with the traditional averaging volume - N unit normal vector pointing from the-phase toward the-phase - p pressure in the-phase, N/m2 - p0 reference pressure in the-phase, N/m2 - p traditional intrinsic volume averaged pressure, N/m2 - r0 radius of a spherical averaging volume, m - r position vector, m - r position vector locating points in the-phase, m - averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 - V cell volume of a unit cell, m3 - v velocity vector in the-phase, m/s - v traditional superficial volume averaged velocity, m/s - x position vector locating the centroid of the averaging volume or the convolution product weighting function, m - y position vector relative to the centroid, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V/V, volume average porosity - mass density of the-phase, kg/m3 - viscosity of the-phase, Ns/m2  相似文献   

11.
Hyperbolic phenomena in a strongly degenerate parabolic equation   总被引:2,自引:0,他引:2  
We consider the equation u t =((u) (u x )) x , where >0 and where is a strictly increasing function with lim s = <. We solve the associated Cauchy problem for an increasing initial function, and discuss to what extent the solution behaves qualitatively like solutions of the first-order conservation law u t = ((u)) x . Equations of this type arise, for example, in the theory of phase transitions where the corresponding free-energy functional has a linear growth rate with respect to the gradient.  相似文献   

12.
When analyzing stochastic steady flow, the hydraulic conductivity naturally appears logarithmically. Often the log conductivity is represented as the sum of an average plus a stochastic fluctuation. To make the problem tractable, the log conductivity fluctuation, f, about the mean log conductivity, lnK G, is assumed to have finite variance, f 2. Historically, perturbation schemes have involved the assumption that f 2<1. Here it is shown that f may not be the most judicious choice of perturbation parameters for steady flow. Instead, we posit that the variance of the gradient of the conductivity fluctuation, f 2, is more appropriate hoice. By solving the problem withthis parameter and studying the solution, this conjecture can be refined and an even more appropriate perturbation parameter, , defined. Since the processes f and f can often be considered independent, further assumptions on f are necessary. In particular, when the two point correlation function for the conductivity is assumed to be exponential or Gaussian, it is possible to estimate the magnitude of f in terms of f and various length scales. The ratio of the integral scale in the main direction of flow ( x ) to the total domain length (L*), x 2=x/L*, plays an important role in the convergence of the perturbation scheme. For x smaller than a critical value c, x < c, the scheme's perturbation parameter is =f/x for one- dimensional flow, and =f/x 2 for two-dimensional flow with mean flow in the x direction. For x > c, the parameter =f/x 3 may be thought as the perturbation parameter for two-dimensional flow. The shape of the log conductivity fluctuation two point correlation function, and boundary conditions influence the convergence of the perturbation scheme.  相似文献   

13.
The spectrum of the Schrödinger operator of a one-dimensional quantum anharmonic oscillator of mass m is studied. This spectrum consists of simple (nondegenerate) eigenvalues E n , $$n\in {\mathbb N}_0$$ such that n E n + as n + with a certain > 1. The gap parameter =min n (E n E n-1) is in the center of the study. It is proven that this parameter is a continuous function of m; its small mass and large mass asymptotics are found. The influence of the dependence of on m on the stability of systems of interacting quantum anharmonic oscillators is briefly discussed.  相似文献   

14.
In this paper, we show that the maximum principle holds for quasilinear elliptic equations with quadratic growth under general structure conditions.Two typical particular cases of our results are the following. On one hand, we prove that the equation (1) {ie77-01} where {ie77-02} and {ie77-03} satisfies the maximum principle for solutions in H 1()L(), i.e., that two solutions u 1, u 2H1() L() of (1) such that u 1u2 on , satisfy u 1u2 in . This implies in particular the uniqueness of the solution of (1) in H 0 1 ()L().On the other hand, we prove that the equation (2) {ie77-04} where fH–1() and g(u)>0, g(0)=0, satisfies the maximum principle for solutions uH1() such that g(u)¦Du|{2L1(). Again this implies the uniqueness of the solution of (2) in the class uH 0 1 () with g(u)¦Du|{2L1().In both cases, the method of proof consists in making a certain change of function u=(v) in equation (1) or (2), and in proving that the transformed equation, which is of the form (3) {ie77-05}satisfies a certain structure condition, which using ((v1 -v 2)+)n for some n>0 as a test function, allows us to prove the maximum principle.  相似文献   

15.
We give a necessary and sufficient condition for the existence of L 1-connections between equilibria of a semilinear parabolic equation. By an L 1-connection from an equilibrium to an equilibrium + we mean a function u(, t) which is a classical solution on the interval (–, T) for some T and blows up at t = T but continues to exist in the space L 1 for t [T, ) and satisfies u(, t) ± (in a suitable sense) as t ±. The main tool in our analysis is the zero number.  相似文献   

16.
The paper presents an exact analysis of the dispersion of a passive contaminant in a viscous fluid flowing in a parallel plate channel driven by a uniform pressure gradient. The channel rotates about an axis perpendicular to its walls with a uniform angular velocity resulting in a secondary flow. Using a generalized dispersion model which is valid for all time, we evaluate the longitudinal dispersion coefficientsK i (i=1, 2, ...) as functions of time. It is shown thatK 1=0 andK 3,K 4, ... decay rapidly in comparison withK 2. ButK 2 decreases with increasing (the dimensionless rotation parameter) for values of upto approximately =2.2. ThereafterK 2 increases with further increase in and its value gets saturated for large values of (say, 500) and does not change any further with increase in . A physical explanation of this anomalous behaviour ofK 2 is given.
Instationäre konvektive Diffusion in einem rotierenden Parallelplattenkanal
Zusammenfassung In dieser Untersuchung wird eine exakte Analyse der Ausbreitung eines passiven Kontaminierungsstoffes in einer zähen Flüssigkeit gegeben, die, befördert durch einen gleichförmigen Druckgradienten, in einem Parallelplattenkanal strömt. Der Kanal rotiert mit gleichförmiger Winkelgeschwindigkeit um eine zu seinen Wänden senkrechte Achse, wodurch sich eine Sekundärströmung ausbildet. Unter Verwendung eines generalisierten, für alle Zeiten gültigen Dispersionsmodells werden die longitudinalen DispersionskoeffizientenK i (i=1, 2, ...) als Funktionen der Zeit ermittelt. Es wird gezeigt, daßK 1=0 gilt und dieK 3,K 4, ... gegenüberK 2 schnell abnehmen.K 2 nimmt ab, wenn , der dimensionslose Rotationsparameter, bis etwa zum Wert 2,2 ansteigt. Danach wächstK 2 mit bis auf einem Endwert an, der etwa ab =500 erreicht wird. Dieses anomale Verhalten vonK 2 findet eine physikalische Erklärung.

List of symbols C solute concentration - D molecular diffusivity - K i longitudinal dispersion coefficients - 2L depth of the channel - P 0 dimensionless pressure gradient along main flow - Pe Péclet number - q velocity vector - Q x,Q y mass flux along the main flow and the secondary flow directions - dimensionless average velocity along the main flow direction - (x, y, z) Cartesian co-ordinates Greek symbols dimensionless rotation parameter - the inclination of side walls withx-axis - kinematic viscosity - fluid density - dimensionless time - angular velocity of the channel - dimensionless distance along the main flow direction - dimensionless distance along the vertical direction - dimensionless solute concentration - integral of the dispersion coefficientK 2() over a time interval  相似文献   

17.
We prove the existence and uniqueness of entropy solutions of the Neumann problem for the quasilinear parabolic equation uta(u, Du), where a(z,)=f(z,), and f is a convex function of with linear growth as ||||, satisfying other additional assumptions. In particular, this class includes the case where f(z,)=(z)(), >0, and is a convex function with linear growth as ||||.  相似文献   

18.
The theory of a vibrating-rod densimeter   总被引:1,自引:0,他引:1  
The paper presents a theory of a device for the accurate determination of the density of fluids over a wide range of thermodynamic states. The instrument is based upon the measurement of the characteristics of the resonance of a circular section tube, or rod, performing steady, transverse oscillations in the fluid. The theory developed accounts for the fluid motion external to the rod as well as the mechanical motion of the rod and is valid over a defined range of conditions. A complete set of working equations and corrections is obtained for the instrument which, together with the limits of the validity of the theory, prescribe the parameters of a practical design capable of high accuracy.Nomenclature A, B, C, D constants in equation (60) - A j , B j constants in equation (18) - a j + , a j wavenumbers given by equation (19) - C f drag coefficient defined in equation (64) - C f /0 , C f /1 components of C f in series expansion in powers of - c speed of sound - D b drag force of fluid b - D 0 coefficient of internal damping - E extensional modulus - force per unit length - F j + , F j constants in equation (24) - f, g functions of defined in equations (56) - G modulus of rigidity - I second moment of area - K constant in equation (90) - k, k constants defined in equations (9) - L half-length of oscillator - Ma Mach number - m a mass per unit length of fluid a - m b added mass per unit length of fluid b - m s mass per unit length of solid - n j eigenvalue defined in equation (17) - P power (energy per cycle) - P a , P b power in fluids a and b - p pressure - R radius of rod or outer radius of tube - R c radius of container - R i inner radius of tube - r radial coordinate - T tension - T visc temperature rise due to heat generation by viscous dissipation - t time - v r , v radial and angular velocity components - y lateral displacement - z axial coordinate - dimensionless tension - a dimensionless mass of fluid a - b dimensionless added mass of fluid b - b dimensionless drag of fluid b - dimensionless parameter associated with - 0 dimensionless coefficient of internal damping - dimensionless half-width of resonance curve - dimensionless frequency difference defined in equation (87) - spatial resolution of amplitude - R, , , s , increments in R, , , s , - dimensionless amplitude of oscillation - dimensionless axial coordinate - ratio of to - a , b ratios of to for fluids a and b - angular coordinate - parameter arising from distortion of initially plane cross-sections - f thermal conductivity of fluid - dimensionless parameter associated with - viscosity of fluid - a , b viscosity of fluids a and b - dimensionless displacement - j jth component of - density of fluid - a , b density of fluids a and b - s density of tube or rod material - density of fluid calculated on assumption that * - dimensionless radial coordinate - * dimensionless radius of container - dimensionless times - rr rr, r radial normal and shear stress components - spatial component of defined in equation (13) - j jth component of - dimensionless streamfunction - 0, 1 components of in series expansion in powers of - phase angle - r phase difference - ra , rb phase difference for fluids a and b - streamfunction - j jth component defined in equation (22) - dimensionless frequency (based on ) - a , b dimensionless frequency in fluids a and b - s dimensionless frequency (based on s ) - angular frequency - 0 resonant frequency in absence of fluid and internal damping - r resonant frequency in absence of internal fluid - ra , rb resonant frequencies in fluids a and b - dimensionless frequency - dimensionless frequency when a vanishes - dimensionless frequencies when a vanishes in fluids a and b - dimensionless resonant frequency when a , b, b and 0 vanish - dimensionless resonant frequency when a , b and b vanish - dimensionless resonant frequency when b and b vanish - dimensionless frequencies at which amplitude is half that at resonance  相似文献   

19.
A numerical study of laminar natural convection inside uniformly heated, partially or fully filled horizontal cylinders is made. A coordinate transformation which simplifies the discretization of the equations of motion and energy is utilized. The resulting system of partial differential equations with their boundary conditions is solved using central differences for various Prandtl and Grashof numbers for two different grid sizes. The flow in completely filled cylinders for which experimental data are available is predicted. Close agreement between steady-state predictions and experiments is obtained for temperature and velocity profiles as well as for the streamline contours and isotherms. The technique is further demonstrated by solving the transient natural convection flow inside a partially filled horizontal cylinder with an adiabatic free surface and subjected to uniform wall heating.
Laminare freie Konvektion in horizontalen Zylindern
Zusammenfassung Es wurde eine numerische Berechnung der laminaren, freien Konvektion in gleichmäßig beheizten, teilweise oder ganz gefüllten, horizontalen Zylindern durchgeführt. Dabei wird eine Koordinatentransformation benützt, welche die Diskretisierung der Bewegungs- und der Energiegleichung vereinfacht. Das so resultierende System von partiellen Differentialgleichungen wird, zusammen mit seinen Randbedingungen, unter Verwendung einer Differenzenmethode für verschiedene Prandtl und Grashof-Zahlen sowie für zwei verschiedene Gittergrößen gelöst. Für den vollständig gefüllten Zylinder, für den experimentelle Daten verfügbar sind, wird die Strömung vorhergesagt. Dabei wird für stationäre Zustände gute Übereinstimmung zwischen Rechnung und Experiment erzielt. Dies gilt sowohl für den Verlauf der Stromlinien als auch für den der Isothermen. Das Verfahren wird weiterhin am Beispiel der Berechnung instationärer, freier Konvektion in einem partiell gefüllten, horizontalen Zylinder demonstriert, wobei eine adiabate, freie Oberfläche und gleichmäßige Beheizung der Wand angenommen sind.

Nomenclature g acceleration due to gravity, m/s2 - Gr R * modified Grashof number =gqR4/kv2 - Gr R Grashof number =gTR3/v2 - H heat function vector, dimensionless - k thermal conductivity, W/mK - L(Y) cord length associated with coordinateY, dimensionless - Pr Prandtl number=v/ - q wall heat flux, W/m2 - R radius, m - r(X, Y,Z) distance of a boundary point from the reference axis, dimensionless - S vector derived from the flow field solution, dimensionless - T temperature, K - T w wall temperature, K - T reference temperature, K - t time, s - u, v velocity components inx, y directions, m/s - U, V dimensionless velocity components inX- and Y-direction normalized withU - U reference velocity=gqR2/k or gTR, m/s - V velocity vector, dimensionless - W vorticity vector, dimensionless - W vorticity, dimensionless - x, y, z cartesian coordinates, m - X, Y, Z cartesian coordinates normalized with a reference length, dimensionless Greek letters thermal diffusivity, m2/s - coefficient of thermal expansion, K–1 - ,,, non-dimensional coordinates in the transformed domain - non-dimensional temperature =(T–T)k/qR or T–T/Tw–T - v kinematic viscosity, m2/s - non-dimensional time=v/R2 GrRt or v/R2 G R * t - angle measured from the bottom of the cylinder, rads - * angle measured from the axis on (– ) plane, rads - heat potential, dimensionless - angle of incidence of the heat flux vector, rads - non-dimensional stream function - vector potential, dimensionless - grid size, dimensionless - 2 Laplacian operator - gradient vector  相似文献   

20.
The problem of laminar forced convection heat transfer in short elliptical ducts with (i) uniform wall temperature and (ii) prescribed wall heat flux is examined in detail with the well known Lévêque theory of linear velocity profile near the wall. Moreover, consideration is given to the variation of the slope of the linear velocity profile with the position on the duct wall. A correction factor for the temperature dependent viscosity is included. Expressions for the local and average Nusselt numbers and wall temperatures are obtained. For the case of constant heat flux the Nusselt numbers are higher than for constant wall temperature.The results corresponding to the classical Graetz and Purday problems are deduced as special cases.Nomenclature a, b semiaxes of ellipse, b Graetz number (average), Re Pr D e/Z - h i o local heat transfer coefficient - J n(x) Bessel function of order n - K thermal conductivity of the fluid - [X] Laplace transform of X - N u o local Nusselt number, h i o D e/K - perimeter average Nusselt number - overall average Nusselt number - Nu w wall Nusselt number - Nu Nusselt number at large distance from the inlet - p Laplace transform parameter - Pr Prandtl number, C a/K - Re Reynolds number, D e / a - T temperature of the fluid - T 1, T W inlet and wall temperatures, respectively - u z local isothermal velocity along the axis of the duct - average fluid velocity - x, y, z Cartesian coordinates, z-axis parallel to the axis of the duct (z=0 at duct inlet) - Z length of the duct - thermal diffusivity, K/C - * correction factor for the temperature dependent viscosity - (x) gamma function - coordinate measured normal to the wall of the duct - a, w viscosity of fluid at average and wall temperatures - , , z elliptic cylindrical coordinates - density of fluid - (z) heat flux  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号