首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The atomic structures of Zr-Ni and Zr-Ti-Al-Cu-Ni metallic glasses were investigated by using classical molecular dynamic (MD), reverse Monte Carlo (RMC), ab initio MD (AIMD) simulations and high resolution transmission electron microscopy (HRTEM) techniques. We focused on the short-range order (SRO) and medium-range order (MRO) in the glassy structure. It is shown that there are icosahedral, FCC-and BCC-type SROs in the Zr-based metallic glasses. A structural model, characterized by imperfect ordered packing (IOP), was proposed based on the MD simulation and confirmed by the HRTEM observation. Furthermore, the evolution from IOP to nanocrystal during the crystallization of metallic glasses was also explored. It is found that the growth from IOP to nanocrystal proceeds through three distinct stages: the formation of quasi-ordered structure with one-dimensional (1D) periodicity, then 2D periodicity, and finally the formation of 3D nanocrystals. It is also noted that these three growth steps are crosslinked. Supported by the National Natural Science Foundation of China (Grant Nos. 50431030 and 50471097), the National Basic Research Program of China (Grant No. 2007CB613901), and the Programme of Introducing Talents of Discipline to Universities (Grant No. B07003)  相似文献   

2.
LiBC was used as a model compound for probing the applicability of phase-contrast (PC) imaging in an aberration-corrected scanning transmission electron microscope (STEM) to visualize lithium distributions. In the LiBC structure, boron and carbon are arranged to hetero graphite layers between which lithium is incorporated. The crystal structure is reflected in the PC-STEM images recorded perpendicular to the layers. The experimental images and their defocus dependence match with multi-slice simulations calculated utilizing the reciprocity principle. The observation that a part of the Li positions is not occupied is likely an effect of the intense electron beam triggering Li displacement.  相似文献   

3.
For the eyeball composed of membrane and liquid, the contrast of ultrasound imaging is not high due to its small variance in acoustic impedance. As a new imaging modality, photoacoustic tomography combines the advantages of pure optical and ultrasonic imaging together and can provide high resolution, high contrast images. In this paper, the feasibility of photoacoustic tomography for ophthalmology is studied experimentally. A Q-switched Nd:YAG pulsed laser with 7-ns pulse width is used to generate photoacoustic signal of a porcine eyeball in vitro. The two-dimensional (2D) optical absorption image of the entire eyeball is reconstructed by time-domain spherical back projection algorithm. The imaging results agree well with the histological structure of the eyeball and show a high imaging contrast.  相似文献   

4.
An environmental transmission electron microscope provides unique means for the atomic-scale exploration of nanomaterials during the exposure to a reactive gas environment. Here we examine conditions to obtain such in situ observations in the high-resolution transmission electron microscopy (HRTEM) mode with an image resolution of 0.10nm. This HRTEM image resolution threshold is mapped out under different gas conditions, including gas types and pressures, and under different electron optical settings, including electron beam energies, doses and dose-rates. The 0.10nm resolution is retainable for H(2) at 1-10mbar. Even for N(2), the 0.10nm resolution threshold is reached up to at least 10mbar. The optimal imaging conditions are determined by the electron beam energy and the dose-rate as well as an image signal-to-noise (S/N) ratio that is consistent with Rose's criterion of S/N≥5. A discussion on the electron-gas interactions responsible for gas-induced resolution deterioration is given based on interplay with complementary electron diffraction (ED), scanning transmission electron microscopy (STEM) as well as electron energy loss spectroscopy (EELS) data.  相似文献   

5.
We describe the use of electron channeling contrast imaging in the scanning electron microscope to rapidly and reliably image and identify threading dislocations (TDs) in materials with the wurtzite crystal structure. In electron channeling contrast imaging, vertical TDs are revealed as spots with black-white contrast. We have developed a simple geometric procedure which exploits the differences observed in the direction of this black-white contrast for screw, edge, and mixed dislocations for two electron channeling contrast images acquired from two symmetrically equivalent crystal planes whose g vectors are at 120° to each other. Our approach allows unambiguous identification of all TDs without the need to compare results with dynamical simulations of channeling contrast.  相似文献   

6.
Verification by imaging of the structure of 3D DNA constructs, both bare and conjugated to metal nanoparticles, is challenging. We demonstrate here two transmission electron microscopy (TEM) based methods to distinguish between fully formed tetrahedra, synthesized from DNA conjugated with gold nanoparticles (GNPs) at their vertices, and structures which are only partially formed. When deposited on a surface, fully formed tetrahedra are expected to retain their 3D pyramidal structure, while partially formed structures are expected to form a 2D structure. The first method by which 3D and 2D structures were distinguished was imaging them at different defocusing values. While for 2D structures all the four GNPs acquire Fresnel fringes at the same defocusing value, for 3D structures at least one particle is at a different plane with respect to the others, and so it acquires Fresnel fringes at a different defocusing value. The second method we show is imaging of the structures at different angles. While a single TEM image gives only a 2D projection of the structure, by combining information achieved from imaging at several tilting angles one may verify the structural construct.  相似文献   

7.
A practical method for transmission electron microscopy specimen preparation of GaAs-based materials with quantum dot structures is presented to show that high-quality image observations in high-resolution transmission electron microscopy (HRTEM) can be effectively obtained. Specimens were prepared in plan-view and cross-section using ion milling, followed by two-steps chemical fine polishing with an ammonia solution (NH4OH) and a dilute H2SO4 solution. Measurements of electron energy loss spectroscopy (EELS) and atomic force microscopy (AFM) proved that clean and flat specimens can be obtained without chemical residues. HRTEM images show that the amorphous regions of carbon and GaAs can be significantly reduced to enhance the contrast of lattice images of GaAs-based quantum structure.  相似文献   

8.
The purpose of this study was to compare the diagnostic efficacy of a newly developed T(1)-weighted three-dimensional segmented echo planar imaging (3D EPI) sequence versus a conventional T(1)-weighted three dimensional spoiled gradient echo (3D GRE) sequence in the evaluation of brain tumors. Forty-four patients with cerebral tumors and infections were examined on a 1.0 T MR unit with 23 mT/m gradient strength. The total scan time for the T(1) 3D EPI sequence was 2 min 12 s, and for a conventional 3D GRE sequence it was 4 min 59 s. Both sequences were performed after administration of a contrast agent. The images were analyzed by three radiologists. Image assessment criteria included lesion conspicuity, contrast between different types of normal tissue, and image artifacts. In addition, signal-to-noise and contrast-to-noise-ratio (C/N) were calculated. The gray-white differentiation and C/N ratio of 3D EPI were found to be inferior to conventional 3D GRE images, but the difference was not statistically significant. In the qualitative comparison, lesion detection and conspicuity of 3D EPI images and conventional 3D GRE images were similar, but a tow-fold reduction of the scanning time was obtained. With the 3D EPI technique, a 50% scan time reduction could be achieved with acceptable image quality compared to conventional 3D GRE. Thus, the 3D EPI technique could replace conventional 3D GRE in the preoperative imaging of brain.  相似文献   

9.
王新全  黄庆梅  廖宁放  林宇 《光学学报》2007,27(9):1600-1604
针对干涉型计算层析成像光谱仪(CTII)提出了一种光谱图像数据立方体的重建方法。干涉型计算层析成像光谱仪是一种将空间调制傅里叶变换成像光谱仪(FTIS)的原理与计算层析成像光谱仪(CTIS)的原理相结合的一种新型成像光谱仪,具有高通量、高光谱分辨力以及高空间分辨力的特点。分析和讨论了干涉型计算层析成像光谱仪的工作原理以及获取图像的特征,介绍了光谱图像数据立方体的重建方法。根据多角度投影数据的特点提出采用卷积反投影计算层析成像图像重建算法,给出了图像重建步骤以及相应的数学表达式。对D65光源照明条件下的396×396像素目标进行了仿真实验,投影角度为0~180°,步长为0.5°,列出了仿真实验部分结果。实验结果验证了干涉型计算层析成像光谱仪及其图像重建算法的可行性。  相似文献   

10.
In this work, we demonstrate a fast approach to grow SiO2 nanowires by rapid thermal annealing (RTA). The material characteristics of SiO2 nanowires are investigated by field emission scanning electron microscopy, high-resolution transmission electron microscopy (HRTEM), high-angle annular dark-field (HAADF) imaging, electron energy loss spectroscopy (EELS), and energy-filtered TEM (EFTEM). The HAADF images show that the wire tip is predominantly composed of Pt with brighter contrast, while the elemental mappings in EFTEM and EELS spectra reveal that the wire consists of Si and O elements. The SiO2 nanowires are amorphous with featureless contrast in HRTEM images after RTA at 900°C. Furthermore, the nanowire length and diameter are found to be dependent on the initial Pt film thickness. It is suggested that a high SiO2 growth rate of >1 μm/min can be achieved by RTA, showing a promising way to enable large-area fabrication of nanowires.  相似文献   

11.
Ni clusters with an average size of 4 nm, supported on MgO micro-cubes were studied by high resolution electron microscopy (HRTEM) and image simulations by the multislice technique. Regular defects were evidenced in the metal clusters at the interface. Molecular dynamic calculations of a 4 nm cluster indicates the same type of defects.  相似文献   

12.
Simulations of reflection electron microscopy (REM) images of both monolayer and bilayer steps on the bulk-terminated Si(001) surface, for the case when the primary electron beam azimuth is directed parallel to the line of the step, are presented. The simulations employ our previously reported theory of REM image formation which uses a 2D Bloch wave formulation of dynamical (multiple scattering) elastic RHEED theory to calculate diffracted amplitudes propagating from the surface. The only step contrast mechanism considered here is phase contrast and this is sufficient to produce the characteristic “black-white” appearance observed experimentally. Defocusing of the simulated images is also discussed.  相似文献   

13.
We show that image simulation is invaluable for the interpretation of time-dependent environmental transmission electron microscopy (ETEM) images. Experimental ETEM images of a crystalline nanoparticle catalyst (NPC) during the growth of carbon nanotubes were compared with simulated images of the Fe(21)Mo(2)C(6) structure that was observed along various directions. Lattice images that appear in the NPC at different times can be accounted for by considering only the Fe(21)Mo(2)C(6) structure.  相似文献   

14.
High-resolution transmission electron microscopy (HRTEM) images of the "incommensurate" structures of 2H-TaSe2 and Bi2Sr2Ca1-xLnx Cu2O8+delta (Ln: rare earth metal) are shown. They were taken from a wide specimen area with homogeneous thickness. For the former, a configuration of two domains was found by a scrutiny of HRTEM images. For the latter, many configurations of two domains were extracted from the photometric density distribution in the one-dimensional contrast modulations in HRTEM images. One domain of the two in both configurations is created by a phase slip occurring in the primary atomic displacement longitudinal wave.  相似文献   

15.
1 Introduction  ThematchedspatialfilteringproposedbyVanderlugt[1] hasreceivedconsiderableattentionbecauseithasinherentadvantageofshiftinvariance ,butthistechniquesuffersfromsensitivitytorotationandscaledeformation .Theinvarianceisthekeytopatternrecogniti…  相似文献   

16.
In projection-type integral imaging, positional errors in elemental images and elemental lenses affect three-dimensional (3D) image quality. We analyzed the relationships between the geometric distortion in elemental images caused by a projection lens and the spatial distortion in the reconstructed 3D image. As a result, we clarified that 3D images that were reconstructed far from the lens array were largely affected, and that the reconstructed images were significantly distorted in the depth direction at the corners of the displayed images.  相似文献   

17.
K. Yu-Zhang  K. Han  A. Misra 《哲学杂志》2013,93(17):2559-2567
Multilayers of Cu–Nb have been grown on a Nb seed layer on a Si (100) substrate using a magnetron sputtering technique. The bilayer period (Λ) was varied from 10 to 2.4 nm. Cross-sectional transmission electron microscopy (XTEM) and high-resolution TEM (HRTEM) were used to study the detailed structure as a function of the bilayer period. Although the majority of the structures conformed to a Kurdjumov–Sachs (K–S) orientation relationship between the Cu and Nb layers, the structures exhibit considerable spatial variation. In some local regions, a Nishiyama–Wasserman (N–W) orientation relationship was found. In addition, considerable distortions were observed in both the Cu and Nb regions close to the interface. Using both HRTEM imaging and fast Fourier transform (FFT) of HRTEM images, early stage of the fcc to bcc transition in Cu was detected. The results suggest that, in multilayer structures, the detailed structure of the interface and large local distortions may play an important role in interface-controlled plasticity.  相似文献   

18.
三维成像声呐的成像结果是三维点云,基于点云的三维成像声呐目标分类方法具有网络结构复杂,计算量大的特点,针对这一问题本文提出了一种将三维成像声呐成像结果从三维点云投影至二维图像的方法,并且使用轻量化卷积神经网络实现了三维成像声呐快速目标分类。该方法首先对三维成像声呐波束形成后的波束域数据进行最大值滤波和阈值滤波,降低点云数据维度;接着,依据三维成像声呐的波束方向,将点云投影为深度图和强度图,分别保存点云的位置信息和强度信息;然后,利用深度图和强度图分别作为第一个通道和第二个通道构建混合通道图,将混合通道图作为目标分类网络的输入,从而将三维点云的目标分类问题转换为二维图像的目标分类问题;最后使用MobileNetV2网络实现了三维成像声呐快速目标分类。实验结果表明,通过本文提出的投影方法可以用二维图像分类网络完成三维成像声呐点云的目标分类任务;而且混合通道图比单独的强度图和深度图收敛速度更快,结合目标识别网络可以25fps实时的进行目标分类,在真实数据集上分类精度达到了91.13%。  相似文献   

19.
A treatment planning system based on magnetic resonance (MR) angiographic imaging data for the radiosurgery of inoperable cerebral arteriovenous malformations is reported. MR angiography was performed using a three-dimensional (3D) velocity-compensated fast imaging with steady-state precession (FISP) sequence. Depending on the individual MR system, inhomogeneities and nonlinearities induced by eddy currents during the pulse sequence can distort the images and produce spurious displacements of the stereotactic coordinates in both the x-y plane and the z axis. If necessary, these errors in position can be assessed by means of two phantoms placed within the stereotactic guidance system--a "2D-phantom" displaying "pincushion" distortion in the image, and a "3D-phantom" displaying displacement, warp, and tilt of the image plane itself. The pincushion distortion can be "corrected" (reducing displacements from 2-3 mm to 1 mm) by calculations based on modeling the distortion as a fourth order 2D polynomial. Displacement, warp, and tilt of the image plane may be corrected by adjustment of the gradient shimming currents. After correction, the accuracy of the geometric information is limited only by the pixel resolution of the image (= 1 mm). Precise definition of the target volume could be performed by the therapist either directly in the MR images or in calculated projection MR angiograms obtained by a maximum intensity projection algorithm. MR angiography provides a sensitive, noninvasive 3D method for defining target volume and critical structures, and for calculating precise dose distributions for radiosurgery of cerebral arteriovenous malformations.  相似文献   

20.
Scanning electron microscopy (SEM) images, transmission electron microscopy (TEM) images, and selected-area electron diffraction (SAED) patterns showed that vertically well aligned GaN nanorods with c-axis-oriented crystalline wurzite structures were grown on Si(1 1 1) substrates by using hydride vapor phase epitaxy. The high-resolution TEM (HRTEM) images showed that the crystallized GaN nanorods contained very few defects and that they were consisted of , {0 0 0 1}, and { } facets. The formation mechanisms for the GaN nanorods grown on Si(1 1 1) substrates are described on the basis of the SEM, TEM, SAED pattern, and HRTEM results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号