首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
超声场下刚性界面附近溃灭空化气泡的速度分析   总被引:3,自引:0,他引:3       下载免费PDF全文
郭策  祝锡晶  王建青  叶林征 《物理学报》2016,65(4):44304-044304
为了揭示刚性界面附近气泡空化参数与微射流的相互关系, 从两气泡控制方程出发, 利用镜像原理, 建立了考虑刚性壁面作用的空化泡动力学模型. 数值对比了刚性界面与自由界面下气泡的运动特性, 并分析了气泡初始半径、气泡到固壁面的距离、声压幅值和超声频率对气泡溃灭的影响. 在此基础上, 建立了气泡溃灭速度和微射流的相互关系. 结果表明: 刚性界面对气泡振动主要起到抑制作用; 气泡溃灭的剧烈程度随气泡初始半径和超声频率的增加而降低, 随着气泡到固壁面距离的增加而增加; 声压幅值存在最优值, 固壁面附近的气泡在该最优值下气泡溃灭最为剧烈; 通过研究气泡溃灭速度和微射流的关系发现, 调节气泡溃灭速度可以达到间接控制微射流的目的.  相似文献   

2.
Cavitation damage is a micro, high-speed, multi-phase complex phenomenon caused by the near-wall bubble group collapse. The current numerical simulation method of cavitation mainly focuses on the collapse impact of a single cavitation bubble. The large-scale simulation of the cavitation bubble group collapse is difficult to perform and has not been studied, to the best of our knowledge. In this study, the equivalent model of impact loading of acoustic bubble collapse micro-jets is proposed to study the cavitation erosion damage of materials. Based on the theory of the micro-jet and the water hammer effect of the liquid–solid impact, an equivalent model of impact loading of a single acoustic bubble collapse micro-jet is established under the principle of deformation equivalence. Since the acoustic bubbles can be considered uniformly distributed in a small enough area, an equivalent model of impact loading of multiple acoustic bubble collapse micro-jets in a micro-segment can be derived based on the equivalent results of impact loading of a single acoustic bubble collapse micro-jet. In fact, the equivalent methods of cavitation damage loading for single and multiple near-wall acoustic bubble collapse micro-jets are formed. The verification results show the law of cavitation deformation of concrete using equivalent loading is consistent with that of a micro-jet simulation, and the average relative errors and the mean square errors are insignificant. The equivalent method of impact loading proposed in this paper has high accuracy and can greatly improve the calculation efficiency, which provides technical support for numerical simulation of concrete cavitation.  相似文献   

3.
The present study numerically investigates liquid-jet characteristics of acoustic cavitation during emulsification in water/gallium/air and water/silicone oil/air systems. It is found that a high-speed liquid jet is generated when acoustic cavitation occurs near a minute droplet of one liquid in another. The velocity of liquid jet significantly depends on the ultrasonic pressure monotonically increasing as the pressure amplitude increases. Also, the initial distance between cavitation bubble and liquid droplet affects the jet velocity significantly. The results revealed that the velocity takes maximum values when the initial distance between the droplet and cavitation bubble is moderate. Surprisingly, the liquid jet direction was found to depend on the droplet properties. Specifically, the direction of liquid jet is toward the droplet in the case of water/gallium/air system, and vice versa the jet is directed from the droplet in the case of water/silicone oil/air system. The jet directionality can be explained by location of the high-pressure spot generated during the bubble contraction.  相似文献   

4.
The bubble collapse near a wall will generate strong micro-jet in a liquid environment under ultrasonic field. To explore the effect of the impact of near-wall acoustic bubble collapse micro-jet on an aluminum 1060 sheet, the cavitation threshold formula and micro-jet velocity formula were first proposed. Then the Johnson-Cook rate correlation material constitutive model was considered, and a three-dimensional fluid-solid coupling model of micro-jet impact on a wall was established and analyzed. Finally, to validate the model, ultrasonic cavitation test and inversion analysis based on the theory of spherical indentation test were conducted. The results show that cavitation occurs significantly in the liquid under ultrasonic field, as the applied ultrasonic pressure amplitude is much larger than liquid cavitation threshold. Micro pits appear on the material surface under the impact of micro-jet. Pit depth is determined by both micro-jet velocity and micro-jet diameter, and increases with their increase. Pit diameter is mainly related to the micro-jet diameter and dp/dj  0.95–1.2, while pit’s diameter-to-depth ratio is mainly negatively correlated with the micro-jet velocity. Wall pressure distribution is mostly symmetric and its maximum appears on the edge of micro-jet impingement. Obviously, the greater the micro-jet velocity is, the greater the wall pressure is. Micro pits formed after the impact of micro-jet on aluminum 1060 surface were assessed by ultrasonic cavitation test. Inversion analysis results indicate that equivalent stress, equivalent strain of the pit and impact strength, and velocity of the micro-jet are closely related with pit’s diameter-to-depth ratio. For the pit’s diameter-to-depth ratio of 16–68, the corresponding micro-jet velocity calculated is 310–370 m/s.  相似文献   

5.
Acoustic cavitation is a very important hydrodynamic phenomenon, and is often implicated in a myriad of industrial, medical, and daily living applications. In these applications, the effect mechanism of liquid surface tension on improving the efficiency of acoustic cavitation is a crucial concern for researchers. In this study, the effects of liquid surface tension on the dynamics of an ultrasonic driven bubble near a rigid wall, which could be the main mechanism of efficiency improvement in the applications of acoustic cavitation, were investigated at the microscale level. A synchronous high-speed microscopic imaging method was used to clearly record the temporary evolution of single acoustic cavitation bubble in the liquids with different surface tension. Meanwhile, the bubble dynamic characteristics, such as the position and time of bubble collapse, the size and stability of the bubbles, the speed of bubble boundaries and the micro-jets, were analyzed and compared. In the case of the single bubbles near a rigid wall, it was found that low surface tension reduces the stability of the bubbles in the liquid medium. Meanwhile, the bubbles collapse earlier and farther from the rigid wall in the liquids with lower surface tension. In addition, the surface tension has no significant influence on the speed of the first micro-jet, but it can substantially increase the speed of second and the third micro-jets after the first collapse of the bubble. These effects of liquid surface tension on the bubble dynamics can explain the mechanism of surfactants in numerous fields of acoustic cavitation for facilitating its optimization and application.  相似文献   

6.
流体体积法(VOF)可以便捷、高效地实现对多相流界面的捕捉和追踪。本文基于VOF方法,对单个空化泡在曲面固壁附近的运动进行了数值模拟,从实验对比、压力场、速度场、温度场演化、溃灭时间、射流速度、固壁温度等方面分析了空化泡溃灭过程的热动力学影响。结果表明,数值模拟得到的空化泡形态演化与实验观测到的现象一致,随着位置参数、泡内外压差及曲面固壁尺寸的改变,空化泡热动力学行为也将发生变化,受到流体运动及射流冲击的影响,溃灭瞬间产生的高温高压使得曲面固壁温度升高。本文研究的曲面固壁附近空化泡溃灭效应,揭示了空化泡与曲面固壁间的相互作用规律,对学术研究及工程应用都具有重要意义。  相似文献   

7.
Aiming at elucidating ultrasonic emulsification mechanisms, the interaction between a single or multiple acoustic cavitation bubbles and gallium droplet interface was investigated using an high-speed imaging technique. To our best knowledge, the moment of emulsification and formation of fine droplets during ultrasound irradiation were observed for the first time. It was found that the detachment of fine gallium droplets occurs from the water-gallium interface during collapse of big cavitation bubbles. The results suggest that the maximum size of cavitation bubble before collapsing is of prime importance for emulsification phenomena. Previous numerical simulation revealed that the collapse of big cavitation bubble is followed by generation of high-velocity liquid jet directed toward the water-gallium interface. Such a jet is assumed to be the prime cause of liquid emulsification. The distance between cavitation bubbles and water-gallium interface was found to slightly affect the emulsification onset. The droplet fragmentation conditions are also discussed in terms of the balance between (1) interfacial and kinetic energies and (2) dynamic and Laplace pressure during droplet formation.  相似文献   

8.
The cavitation bubble dynamics, the variation of pressure and velocity fields of the surrounding liquid in the process of the bubble axisymmetric compression near a planar solid wall are considered. It is assumed that the liquid is at rest at the initial moment of time, and the bubble has a spheroidal shape. The liquid is assumed inviscid and incompressible, its motion being potential. The bubble surface deformation and the liquid velocity on the surface are computed by the Euler scheme using the boundary element method until the moment of the collision of some parts of the bubble surface with one another. The influence of the distance of the bubble from the wall and its initial nonsphericity on the liquid pressure and velocity fields, the bubble shape, and the pressure inside the bubble at the end of the time interval under consideration are studied. The maximum pressure in liquid is shown to realize at the bottom of the cumulative jet arising at the bubble collapse with direction to the wall. In the upper part of this jet, the velocity and pressure are practically constant, and the pressure in the jet is approximately equal to the pressure in the bubble.  相似文献   

9.
The cavitation bubble collapse near a cell can cause damage to the cell wall. This effect has received inereasing attention in biomedical supersonics. Based on the lattice Boltzmann method, a multiple-relaxation-time Shan-Chen model is built to study the cavitation bubble collapse. Using this model, the cavitation phenomena induced by density perturbation are simulated to obtain the coexistence densities at certain temperature and to demonstrate the Young-Laplace equation. Then, the cavitation bubble collapse near a curved rigid wall and the consequent high-speed jet towards the wall are simulated. Moreover, the influences of initial pressure difference and bubble-wall distance on the cavitation bubble collapse are investigated.  相似文献   

10.
The deposition process of the laser-induced forward transfer of liquids at high laser fluences is analyzed through time-resolved imaging. It has been found that, at these conditions, sessile droplets are deposited due to the contact of a generated cavitation bubble with the receptor substrate, in contrast to the jet contact mechanism observed at low and moderate laser fluences. The bubble contact results in droplets with a larger diameter, a smaller contact angle and a lower uniformity than those of the jet mechanism. Therefore, in order to attain a high degree of resolution this mechanism should be prevented.  相似文献   

11.
In ultrasonic-assisted machining, the synergistic effect of the cavitation effect and micro-abrasive particles plays a crucial role. Studies have focused on the investigation of the micro-abrasive particles, cavitation micro-jets, and cavitation shock waves either individually or in pairs. To investigate the synergy of shock waves and micro-jets generated by cavitation with micro-abrasive particles in ultrasonic-assisted machining, the continuous control equations of a cavitation bubble, shock wave, micro-jet, and micro-abrasive particle influenced by the dimensionless amount (R/R0), a particle size-velocity–pressure model of the micro-abrasive particle was established. The effects of ultrasonic frequency, sound pressure amplitude, and changes in particle size on micro-abrasive particle velocity and pressure were numerically simulated. At an ultrasonic frequency of 20 kHz and ultrasonic sound pressure of 0.1125 MPa, a smooth spherical SiO2 micro-abrasive particle (size = 5 µm) was obtained, with a maximum velocity of 190.3–209.4 m/s and pressure of 79.69–89.41 MPa. The results show that in the range of 5–50 μm, smaller particle sizes of the micro-abrasive particles led to greater velocity and pressure. The shock waves, micro-jets, and micro-abrasive particles were all positively affected by the dimensionless amount (R/R0) of cavitation bubble collapse, the larger the dimensionless quantity, the faster their velocity and the higher their pressure.  相似文献   

12.
The interaction between cavitation bubble and solid surface is a fundamental topic which is deeply concerned for the utilization or avoidance of cavitation effect.The complexity of this topic is that the cavitation bubble collapse includes many extreme physical phenomena and variability of different solid surface properties.In the present work,the cavitation bubble collapse in hydrophobic concave is studied using the pseudopotential multi-relaxation-time lattice Boltzmann model(MRT-LB).The model is modified by involving the piecewise linear equation of state and improved forcing scheme.The fluid-solid interaction in the model is employed to adjust the wettability of solid surface.Moreover,the validity of the model is verified by comparison with experimental results and grid-independence verification.Finally,the cavitation bubble collapse in a hydrophobic concave is studied by investigating density field,pressure field,collapse time,and jet velocity.The superimposed effect of the surface hydrophobicity and concave geometry is analyzed and explained in the framework of the pseudopotential LBM.The study shows that the hydrophobic concave can enhance cavitation effect by decreasing cavitation threshold,accelerating collapse and increasing jet velocity.  相似文献   

13.
For the analysis of ultrasonic cavitation erosion on the surface of materials, the ultrasonic cavitation erosion experiments for AlCu4Mg1 and Ti6Al4V were carried out, and the changes of surface topography, surface roughness, and Vickers hardness were explored. Cavitation pits gradually expand and deepen with the increase of experiment time, and Ti6Al4V is more difficult to erode by cavitation than AlCu4Mg1. After experiments, the cavitation damage characteristics such as the single pit, the rainbow ring area, the fisheye pit, and some small pits were observed, which can be considered to be induced by a single micro-jet impact, ablation effect caused by the high temperature, micro-jet impingement with a sharp angle, and multibeam micro-jets coupling impact or negative pressure in the local area produced by micro-jet impact, respectively. The surface roughness and Vickers hardness of the material increase slowly after rapid growth at different points in time as the experiment time increases. With the increase of the ultrasonic amplitude, both of them first increase and then decrease after the ultrasonic amplitude is greater than 10.8 μm. The increases in surface roughness and Vickers hardness tend to decrease as the viscosity coefficient increases. Ultrasonic cavitation can cause submicron surface roughness and increase surface hardness by 20.36%, so it can be used as a surface treatment method.  相似文献   

14.
姚熊亮  叶曦  张阿漫 《物理学报》2013,62(24):244701-244701
基于波动方程给出了计及可压缩性的边界积分方程. 以此为基础,求解行波驱动下非球状空泡的运动规律及其运动稳定性,并分析比较了行波频率、幅值以及初相位对空泡运动特性的影响. 研究结果表明:较高的行波频率与较低的幅值是空泡稳定运动的充分条件. 在一定幅值和频率的行波驱动下,空泡将在收缩阶段末期形成与行波传播方向相同的高速射流;计及流场可压缩性后,空泡脉动一次的时间减短,幅度减弱,射流顶点速度以及空泡内部压力的峰值随之减小;随着行波频率的增大或是幅值的降低,空泡脉动幅度与射流强度逐渐减弱;行波初相位的变化使空泡的初始运动状态随之改变,并影响非球状变形时的射流强度. 关键词: 可压缩 空泡 行波 运动特性  相似文献   

15.
空化泡的运动特性是声场作用下的动力学行为,受空化泡初始半径,声压幅值,驱动声压频率,液体特性等众多因素的影响,是个复杂工程。本文从双空化泡运动方程出发,考虑到液体粘滞系数、空化泡辐射阻尼项的影响,研究了不同初始半径、驱动声压频率、驱动声压幅值、液体粘滞系数下空化泡泡壁的运动情况,研究结果表明不同初始半径、外界驱动声压频率、驱动声压幅值、液体粘滞系数均会对空化泡的膨胀比和空化泡的溃灭时间有一定影响。  相似文献   

16.
格子Boltzmann方法伪势多相模型具有高效性和复杂几何边界实施的简易性。该文采用改进作用力的伪势多相模型,通过优化参数实现最大程度的热力学一致性,进而提高模型的密度比和稳定性。分别从伪速度、网格不变性、Young-Laplace验证等方面研究了改进模型的性能。通过改进的模型模拟了复杂几何固壁附近空泡溃灭过程。分析了空化泡溃灭阶段的密度场、压力场和速度场演化过程,以及复杂几何固壁附近的空泡动力学特性。结果表明伪势格子Boltzmann方法在探索空泡溃灭和复杂几何固壁间的相互作用规律研究中是一种有效的工具。  相似文献   

17.
Some general features of limited coalescence in solid-stabilized emulsions   总被引:1,自引:0,他引:1  
We produce direct and inverse emulsions stabilized by solid mineral particles. If the total amount of particles is initially insufficient to fully cover the oil-water interfaces, the emulsion droplets coalesce such that the total interfacial area between oil and water is progressively reduced. Since it is likely that the particles are irreversibly adsorbed, the degree of surface coverage by them increases until coalescence is halted. We follow the rate of droplet coalescence from the initial fragmented state to the saturated situation. Unlike surfactant-stabilized emulsions, the coalescence frequency depends on time and particle concentration. Both the transient and final droplet size distributions are relatively narrow and we obtain a linear relation between the inverse average droplet diameter and the total amount of solid particles, with a slope that depends on the mixing intensity. The phenomenology is independent of the mixing type and of the droplet volume fraction allowing the fabrication of both direct and inverse emulsion with average droplet sizes ranging from micron to millimetre.Received: 4 April 2003, Published online: 8 July 2003PACS: 82.70.-y Disperse systems; complex fluids - 82.70.Kj Emulsions and suspensions - 68.15.+e Liquid thin films  相似文献   

18.
周剑宏  童宝宏  王伟  苏家磊 《物理学报》2018,67(11):114701-114701
旋转工作的机械零部件和机械设备的润滑系统工作过程中普遍存在着油滴和油膜的碰撞行为,这一行为易引起气泡夹带现象.气泡将对油滴撞击油膜时的运动过程和附壁油膜层的形成质量造成不可忽视的影响.基于耦合的水平集-体积分数方法,对油滴撞击含气泡油膜的行为进行数值模拟研究,考察油膜层内气泡的变形运动过程,分析气泡大小和位置等因素对撞击过程中气泡变形特征参数的影响规律,并探讨气泡破裂的动力学机制.研究表明,随着气泡直径的增大,油滴撞击含气泡油膜后气泡会依次出现自由表面破裂、稳定变形以及油膜内部破裂等现象;直径d=20μm的气泡能较稳定地存在于油膜层内,同时该值也是气泡发生自由表面破裂和油膜内部破裂的临界值.此外,气泡所在位置同样对气泡变形历程有一定影响,气泡越接近油膜表面,其变形量越大;位于油膜底层的气泡会附着在壁面上.在自由表面破裂和油膜内部破裂过程中,气泡破裂是由气-液界面不稳定引起的,表面张力对这两种现象起重要作用;而黏性剪切力对油膜内部破裂现象也有着不可忽视的影响.  相似文献   

19.
本文采用微加热器对液滴进行局部加热,并对其蒸发沸腾现象进行了可视化研究。液滴局部加热后产生局部沸腾现象,内部生成单气泡,气泡附着在加热基板上,持续生长,当达到某个临界点气泡破裂。在加热初期,气泡生长速度很快,随着加热过程的不断进行,气泡的生长速度逐渐放缓;随着气泡生长顺序的不断推迟,最大直径减小;加热功率的提升会增加气泡的生长速度,缩短气泡的生长时间。通过对气泡破裂过程的研究,气泡破碎过程开始于气泡上方的液膜断裂,形成不稳定的瑞利流和向上喷射的液滴,在表面张力的作用下,恢复初始状态,气泡破裂直径大小会影响液滴的波动幅度与周期。  相似文献   

20.
The thermodynamic of cavitation bubble collapsing is a complex fundamental issue for cavitation application and prevention. The pseudopotential and thermal multi-relaxation-time lattice Boltzmann method (MRT-LBM) is adopted to investigate the thermodynamic of collapsing cavitation bubble in this paper. The simulation results satisfy the maximum temperature equation of the bubble collapse, which derived from the Rayleigh-Plesset (R-P) equation. The validity of thermal MRT-LBM in simulating the collapse process of cavitation bubble is verified. It shows that the temperature evolution of vapor-liquid phase is well captured. Furthermore, the two-dimensional (2D) temperature, velocity and pressure field of the bubble near a solid wall are analyzed. The maximum temperature inside the bubble and wall temperature under different position offset parameters are discussed in details.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号