首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of ultrasound (US) pretreatments combined with infrared (IRD) and hot-air (HAD) drying on drying kinetics, mathematical modeling, bioactive compounds (antioxidant activities, Vitamin C, phenolics, and flavonoid contents), qualitative properties (β-carotene, total carotenoids, color indexes, textural profile), enzyme inactivation, and exergetic analysis of sweet potatoes. The US pretreatment at 40 kHz combined with IRD and HAD (70 °C) significantly lessened the drying time and water contents. Besides, it did not affect the sweet potato's bioactive components and other quality-related attributes. The samples’ activation energy (Ea) ranged from 17.60 to 29.86 kJ/mol for both dryers, with R2 (0.999–0.9809). Control samples had the highest specific energy consumption (SEC) due to the extended drying period, whereas ultrasound (40 kHz) treated samples had the lowest SEC during HAD and IRD at 80 °C. The thermodynamic parameters indicated that increasing the drying temperature lowers the enthalpy and Gibbs free energy, while entropy resulted in negative values. HAD had better textural qualities (hardness and resilience). The US pretreatments followed by HAD or IRD may lead to an energy-efficient method with acceptable quality maintenance.  相似文献   

2.
The effects of osmotic pretreatment assisted by ultrasound in different frequency modes before vacuum freeze-drying (VFD) on moisture migration and quality characteristics of strawberry slices were investigated. The frequency modes are single-frequency modes under 20, 40 kHz (SM-20, SM-40), and dual-frequency under 20/40 kHz including sequential mode (SeDM) and simultaneous mode (SiDM). The quality characteristics of dried strawberry products including rehydration, hardness, color, flavor, total anthocyanins, total phenols, vitamin C content, and active antioxidant components (DPPH and –OH) were determined. Results showed that drying time of the strawberry slices irradiated by ultrasound was reduced by 15.25%–50.00%, compared to the control samples. Besides, dual-frequency ultrasound shortened the drying time more than single-frequency ultrasound. The drying time of SeDM was the shortest. In addition to vitamin C content, the quality characteristics including rehydration, hardness, color, flavor, total anthocyanins, total phenols, and antioxidant activity of dried strawberry products pretreated by SeDM were significantly (p < 0.05) better than those of control and other pretreated samples. It can be concluded that the SeDM was an effective pretreatment method to produce high-quality vacuum freeze-dried strawberry products.  相似文献   

3.
This study evaluated the effect of mono-frequency ultrasound (MFU, 20 kHz), dual-frequency ultrasound (DFU, 20/40 kHz), and tri-frequency ultrasound (TFU, 20/40/60 kHz) on mass transfer, drying kinetics, and quality properties of infrared-dried pineapple slices. Pretreatments were conducted in distilled water (US), 35 °Brix sucrose solution (US-OD), and 75% (v/v) ethanol solution (US-ET). Results indicated that ultrasound pretreatments modified the microstructure of slices and shortened drying times. Compared to the control group, ultrasound application reduced drying time by 19.01–28.8% for US, 15.33–24.41% for US-OD, and 38.88–42.76% for US-ET. Tri-frequency ultrasound provoked the largest reductions, which exhibited time reductions of 6.36–11.20% and better product quality compared to MFU. Pretreatments increased color changes and loss of bioactive compounds compared to the control but improved the flavor profile and enzyme inactivation. Among pretreated sample groups, US-OD slices had lower browning and rehydration abilities, higher hardness values, and better retention of nutrients and bioactive compounds. Therefore, the combination of TFU and osmotic dehydration could simultaneously improve ultrasound efficacy, reduce drying time, and produce quality products.  相似文献   

4.
Low temperature drying (LTD) allows high-quality dried products to be obtained, preserving the nutritional properties of fresh foods better than conventional drying, but it is a time-consuming operation. Power ultrasound (US) could be used to intensify LTD, but it should be taken into account that process variables, such as the level of applied power, have an influence on the magnitude and extension of the ultrasonic effects. Therefore, the aim of this work was to assess the influence of the level of applied ultrasonic power on the LTD of apple, analyzing the drying kinetics and the quality of the dried product. For that purpose, apple (Malus domestica cv. Granny Smith) cubes (8.8 mm side) were dried (2 m/s) at two different temperatures (10 and −10 °C), without and with (25, 50 and 75 W) US application. In the dried apple, the rehydration kinetics, hardness, total phenolic content, antioxidant capacity and microstructure were analyzed to evaluate the impact of the level of applied ultrasonic power.At both temperatures, 10 and −10 °C, the higher the ultrasonic power level, the shorter the drying time; the maximum shortening of the drying time achieved was 80.3% (at −10 °C and 75 W). The ultrasonic power level did not significantly (p < 0.05) affect the quality parameters analyzed. Therefore, US could be considered a non-thermal method of intensifying the LTD of fruits, like apple, with only a mild impact on the quality of the dried product.  相似文献   

5.
The present study has evaluated the effects of power ultrasound pre-treatment on air-drying and bioactive compounds of cashew apple bagasse. The sonication induced the disruption of cashew bagasse parenchyma, which resulted in lower resistance to water diffusion, less hysteresis, and increased rehydration rate. The processing did not affect the lignocellulose fibers or the sclerenchyma cells. For sonicated samples, water activity reached values below 0.4, after 2 h of drying, which is appropriate to prevent bacterial and fungi growth. The sorption isotherms of cashew apple bagasse presented sigmoid-shape for all samples and followed the type II according to BET classification. Sonicated cashew apple bagasse showed higher antioxidant activity, higher total phenolic compounds (TPC) and higher vitamin C content when compared to the non-sonicated sample. The increase in TPC and vitamin C contributed to the product antioxidant activity. A slight reduction on Vitamin C bioaccessibility was observed, but the TPC bioaccessibility has increased. Sonication reduced the quality loss of conventional drying treatments improving the quality of the dried product.  相似文献   

6.
A novel drying technique using a combination of ultrasound and vacuum dehydration was developed to shorten the drying time and improve the quality of carrot slices. Carrot slices were dried with ultrasonic vacuum (USV) drying and vacuum drying at 65 °C and 75 °C. The drying rate was significantly influenced by the drying techniques and temperatures. Compared with vacuum drying, USV drying resulted in a 41–53% decrease in the drying time. The drying time for the USV and vacuum drying techniques at 75 °C was determined to be 140 and 340 min for carrot slices, respectively. The rehydration potential, nutritional value (retention of β-carotene and ascorbic acid), color, and textural properties of USV-dried carrot slices are predominately better compared to vacuum-dried carrot slices. Moreover, lower energy consumption was used in the USV technique. The drying data (time versus moisture ratio) were successfully fitted to Wang and Singh model.  相似文献   

7.
This study aimed at investigating the performances of air drying of blackberries assisted by airborne ultrasound and contact ultrasound. The drying experiments were conducted in a self-designed dryer coupled with a 20-kHz ultrasound probe. A numerical model for unsteady heat and mass transfer considering temperature dependent diffusivity, shrinkage pattern and input ultrasonic energies were applied to explore the drying mechanism, while the energy consumption and quality were analyzed experimentally. Generally, both airborne ultrasound and contact ultrasound accelerated the drying process, reduced the energy consumption and enhanced the retentions of blackberry anthocyanins and organic acids in comparison to air drying alone. At the same input ultrasound intensity level, blackberries received more ultrasound energies under contact sonication (0.299 W) than airborne sonication (0.245 W), thus avoiding the attenuation of ultrasonic energies by air. The modeling results revealed that contact ultrasound was more capable than airborne ultrasound to intensify the inner moisture diffusion and heat conduction, as well as surface exchange of heat and moisture with air. During air drying, contact ultrasound treatment eliminated the gradients of temperature and moisture inside blackberry easier than airborne ultrasound, leading to more homogenous distributions. Moreover, the total energy consumption under air drying with contact ultrasound assistance was 27.0% lower than that with airborne ultrasound assistance. Besides, blackberries dehydrated by contact ultrasound contained more anthocyanins and organic acids than those dried by airborne ultrasound, implying a higher quality. Overall, direct contact sonication can well benefit blackberry drying in both energy and quality aspects.  相似文献   

8.
One of the earliest and most prevalent processing methods to increase the shelf-life of foods is drying. In recent years, there has been an increased demand to improve product quality while lowering processing times, expenses, and energy usage in the drying process. Pre-treatments are therefore effectively used before drying to enhance heat and mass transfer, increase drying efficiency, and lessen degradation of final product quality. When food is dried, changes are expected in its taste, color, texture, and physical, chemical, and microbial properties. This has led to the need for research and development into the creation of new and effective pre-treatment technologies including high-pressure processing, pulsed electric field, ultraviolet irradiation, and ultrasound. Sound waves that have a frequency >20 kHz, which is above the upper limit of the audible frequency range, are referred to as “ultrasound”. Ultrasonication (US) is a non-thermal technology, that has mechanical, cavitational, and sponge effects on food materials. Ultrasound pre-treatment enhances the drying characteristics by producing microchannels in the food tissue, facilitating internal moisture diffusion in the finished product, and lowering the barrier to water migration. The goal of ultrasound pre-treatment is to save processing time, conserve energy, and enhance the quality, safety, and shelf-life of food products. This study presents a comprehensive overview of the fundamentals of ultrasound, its mechanism, and how the individual effects of ultrasonic pre-treatment and the interactive effects of ultrasound-assisted technologies affect the drying kinetics, bioactive components, color, textural, and sensory qualities of food. The difficulties that can arise when using ultrasound technology as a drying pretreatment approach, such as inadequate management of heat, the employment of ultrasound at a limited frequency, and the generation of free radicals, have also been explained.  相似文献   

9.
The aim of this study was to assess the impact of ultrasound on two subsequent processes – initial osmotic dehydration and convective drying of kiwifruit (Actinidia deliciosa). The effect of ultrasound (at a frequency of 25 kHz) was assessed both in terms of process kinetics and product quality. During the study, three different osmotic agents were used – erythritol, sorbitol, and sucrose – in an aqueous solution at a concentration of 50% (w/w). The essential kinetic parameters were analyzed – water loss and increase of dry matter during osmotic dehydration, and evolution of moisture content and temperature of samples during convective drying (drying curves). Product quality was assessed on the basis of color, water activity, and content of relevant bioactive components – polyphenols and carotenoids. It was found that the application of ultrasound during osmotic dehydration resulted in higher water loss and solid gain. This surely results from the phenomena occurring during the propagation of the elastic waves in the liquid medium (mainly related to cavitation) and enhancement of the mass transfer. The use of ultrasound during convective drying also had a positive effect on the kinetics of this process. In most cases, during the ultrasonically assisted drying operations, a significant increase in drying rate was observed, leading to a reduction in drying time. This may be due to the intensification of both heat and mass transfer as a result of the mechanical and thermal effects of ultrasound. The assessment of product quality showed that the use of sugar alcohols was a good alternative to sucrose, and ultrasound-assisted convective drying increased the retention of valuable carotenoids and polyphenols. Moreover, in all dried kiwifruit slices, water activity was below 0.6, which can guarantee the microbiological stability of the tested samples.  相似文献   

10.
The influence of ultrasonic frequency (20 kHz) and glucose pretreatments either alone or in combination on the drying of sweet potato slices (3 mm) using a hot-air dryer at 60 °C was tested to study the kinetics modeling, phytochemicals, antioxidant activities, and functional and textural changes of the final dried product. The results indicated that total phenolic content and total flavonoid content were significantly higher in glucose-pretreated samples while antioxidant activities were higher in ultrasound- and glucose-pretreated samples. For vitamin C, much degradation occurred in the glucose-pretreated samples when compared with the other pretreated samples apart from the control. Enzymatic browning made a minor contribution to the ultrasound/glucose-pretreated samples, while no significant differences were noted in the glucose-pretreated samples. A modified Henderson and Pabis (MHP) model, followed by the two-term and Hii models, fitted best among the 15 selected mathematical models. Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed the presence of glucose, phenols, and flavonols in all samples. Microstructural analysis confirmed the hardness (N) in the final glucose-pretreated samples due to glucose layers and less cell damage.  相似文献   

11.
Vacuum freeze-drying is a new and high technology on agricultural product dehydrating dry, but it faces the high cost problem caused by high energy consumption. This study investigated the effect of ultrasound (US), freeze-thawing (including the freeze-air thawing (AT), freeze-water thawing (WT), freeze-ultrasound thawing (UST), and freeze-air ultrasound thawing (AT + US)) pretreatments on the vacuum freeze-drying efficiency and the quality of dried okra. The results indicated that the application of ultrasound and different freeze-thawing pretreatments reduced the drying time by 25.0%–62.50% and the total energy consumption was 24.28%–62.35% less. The AT pretreatment reduced the time by of okra slices by 62.50% and the total energy consumption was 62.35% less. The significant decrease in drying time was due to a change in the microstructure caused by pretreatment. Besides, the okra pretreated with the US retained most of the quality characteristics (flavor, color, hardness, and frangibility) among all methods, while, AT + US had the most changeable characteristics in quality, which is deprecated in our study. The okra pretreated with the US and AT, separately, had the best dry matter content loss (9.008%, 5.602%), lower chlorophyll degradation (5.05%, 5.44% less), and higher contents of total phenolics, total flavonoids, and pectin, with strong antioxidant capacity, compared to other methods. The pretreatments did not have a large effect on the functional groups and the structure of pectin, but slightly affected the viscosity. It can be concluded that AT and US pretreatment methods are better than others.  相似文献   

12.
In this investigation, the combinations of exogenous pretreatment (melatonin or vitamin C) and contact ultrasound-assisted air drying were utilized to dry broccoli florets. To understand the influences of the studied dehydration methods on the conversion of glucoraphanin to bioactive sulforaphane in broccoli, various components (like glucoraphanin, sulforaphane, myrosinase, etc.) and factors (temperature and moisture) involved in the metabolism pathway were analyzed. The results showed that compared with direct air drying, the sequential exogenous pretreatment and contact ultrasound drying shortened the drying time by 19.0–22.7%. Meanwhile, contact sonication could promote the degradation of glucoraphanin. Both melatonin pretreatment and vitamin C pretreatment showed protective effects on the sulforaphane content and myrosinase activity during the subsequent drying process. At the end of drying, the sulforaphane content in samples dehydrated by the sequential melatonin (or vitamin C) pretreatment and ultrasound-intensified drying was 14.4% (or 26.5%) higher than only air-dried samples. The correlation analysis revealed that the exogenous pretreatment or ultrasound could affect the enzymatic degradation of glucoraphanin and the generation of sulforaphane through weakening the connections of sulforaphane-myrosinase, sulforaphane-VC, and VC-myrosinase. Overall, the reported results can enrich the biochemistry knowledge about the transformation of glucoraphanin to sulforaphane in cruciferous vegetables during drying, and the combined VC/melatonin pretreatment and ultrasound drying is conducive to protect bioactive sulforaphane in dehydrated broccoli.  相似文献   

13.
The aim of these studies was to investigate the influence of airborne ultrasound-assisted convective drying and microwave-assisted convective drying, as well as their combination, on process kinetics, total color change, water activity, content of carotenoids, polyphenols and antioxidant activity of carrots (Daucus carota L.). The global model of drying kinetics based on coupled ordinary differential equations was used to describe the moisture and material temperature profiles during drying. Application of ultrasound and microwave in convective drying reduced drying time in the range of 9–81%, but the shortest drying time was observed for simultaneous action of convection, ultrasound and microwave. The results of qualitative analysis showed a product improvement due to ultrasound as compared to convective drying and microwave-convective drying. The proposed mathematical model of drying kinetics successfully simulated real drying processes. The proposed mathematical model of drying kinetics successfully simulated real hybrid drying processes.  相似文献   

14.
Pretreatment combined with vacuum freeze-drying is an effective technique to extend the storage period of jujube fruits and reduce energy consumption and cost; however, the effects of pretreatment on the quality characteristics of jujube during vacuum freeze-drying remain unknown. In this study, the effects of cold plasma (CP), high hydrostatic pressure (HHP), ultrasound (US), high-pressure carbon dioxide (HPCD), and conventional blanching (BC) as pretreatments on the performance of vacuum freeze-dried jujube slices were investigated. The results indicated that the application of different pretreatments decreased the water activity and increased the rehydration capacity, owing to the pretreatment etching larger and more porous holes in the microstructure. Freeze-dried jujube slices pretreated with HPCD retained most of their quality characteristics (color, hardness, and volatile compounds), followed by the HHP- and US-pretreated samples, whereas samples pretreated with BC showed the greatest deterioration in quality characteristics, and hence, BC is not recommended as a pretreatment for freeze-dried jujube slices. Sensory evaluation based on hedonic analysis showed that jujube slices pretreated with HPCD and US were close to the control sample and scored highest. Compared to other pretreated samples and the control, freeze-dried jujube slices pretreated with HPCD showed the least degradation (4.93%) of cyclic adenosine monophosphate (cAMP), the highest contents of total phenol, total flavonoid, and l-ascorbic acid, and the highest antioxidant capacity. Partial least squares-discriminant analysis (PLS-DA) was performed to screen all the quality characteristic data of different pretreated samples, and 12 volatile compounds, including ethyl hexanoate and (E)-2-hexenal, along with color, l-ascorbic acid content, and cAMP content were found suitable to be used as discriminators for pretreated freeze-dried jujube slices. Therefore, non-thermal pretreatments, including HPCD, US, and HHP pretreatments, are promising techniques for the vacuum freeze-drying of jujube products.  相似文献   

15.
We assessed the impact of selected pretreatment techniques, thus, vacuum-assisted osmotic dehydration (VOD), vacuum-assisted sonication (VSON) and vacuum-assisted osmosonication (VOS) on the metabolomes and quality characteristics of infrared-dried ginger slices. We found marked metabolome differences between the pretreated ginger samples, evidenced by differential amounts of 6-gingerol and 6-shogaol, total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activities. We also found distinct differences in the drying kinetics and sensory characteristics of the pretreated samples. Generally, VOS pretreatment gave the best outcomes. The VOS-pretreated samples contained the highest contents of the marker compounds, TPC, TFC and gave the best antioxidant activity. The VOS-pretreated samples also recorded the shortest drying time and exhibited the best sensory attributes. Overall, the general order observed was, VOS > VSON > VOD > control for all quality parameters examined. VOS pretreatment of ginger before drying therefore holds a great potential for large-scale industrial application.  相似文献   

16.
This study presents the emerging high-intensity ultrasound (HIUS) processing as a non-thermal alternative to high-temperature short-time pasteurization (HTST). Chocolate milk beverage (CMB) was subjected to different ultrasound energy densities (0.3–3.0 kJ/cm3), as compared to HTST pasteurization (72 °C/15 s) aimed to verify the effect of the HIUS processing on the microbiological and physicochemical characteristics of the beverage. The application of HIUS at an energy density of 3.0 kJ/cm3 was able to reduce 3.56 ± 0.02 logarithmic cycles in the total aerobic counts. In addition, the ultrasound energy density affected the physical properties of the beverage as the size distribution of fat globule and rheological behavior, as well as the chemical properties such as antioxidant activity, ACE inhibitory activity, fatty acid profile, and volatile profile. In general, the different energetic densities used as a non-thermal method of pasteurization of CMB were more effective when compared to the conventional pasteurization by HTST, since they improved the microbiological and physicochemical quality, besides preserving the bioactive compounds and the nutritional quality of the product.  相似文献   

17.
This study analyzes the effects of ultrasonic waves on the drying kinetics of Tremella fuciformis during microwave vacuum drying. The physicochemical properties and structural characteristics of T. fuciformis polysaccharides (TFPs) were studied by drying tremella samples using hot air drying (HAD), microwave vacuum drying, ultrasonic pretreatments with microwave vacuum drying (US + MVD), and air-borne ultrasonic pretreatments combined with microwave vacuum drying (USMVD) under acoustic energy densities of 0.14, 0.28, and 0.42 W/mL. The results showed that USMVD and US + MVD accelerated the mass transfer process of T. fuciformis. Compared with HAD treatment, TFP samples obtained by USMVD and US + MVD had a reduced molecular weight to a certain extent, and they had stronger shear thinning ability. In addition, USMVD-TFPs at 0.42 W/mL retained higher total sugar, reducing sugar, and uronic acid, and the degree of reduction in the monosaccharide component content was small.  相似文献   

18.
The effect of ultrasound pretreatment prior to convective drying on drying kinetics and selected quality properties of mulberry leaves was investigated in this study. Ultrasound pretreatment was carried out at 25.2–117.6 W/L for 5–15 min in a continuous mode. After sonication, mulberry leaves were dried in a hot-air convective dryer at 60 °C. The results revealed that ultrasound pretreatment not only affected the weight of mulberry leaves, it also enhanced the convective drying kinetics and reduced total energy consumption. The drying kinetics was modeled using a diffusion model considering external resistance and effective diffusion coefficient De and mass transfer coefficient hm were identified. Both De and hm during convective drying increased with the increase of acoustic energy density (AED) and ultrasound duration. However, De and hm increased slowly at high AED levels. Furthermore, ultrasound pretreatment had a more profound influence on internal mass transfer resistance than on external mass transfer resistance during drying according to Sherwood numbers. Regarding the quality properties, the color, antioxidant activity and contents of several bioactive compounds of dried mulberry leaves pretreated by ultrasound at 63.0 W/L for 10 min were similar to that of mulberry leaves without any pretreatments. Overall, ultrasound pretreatment is effective to shorten the subsequent drying time of mulberry leaves without damaging the quality of final product.  相似文献   

19.
Fresh apple juice treated with ultrasound (for 0, 30, 60 and 90 min, at 20 °C, 25 kHz frequency) was evaluated for different physico-chemical, Hunter color values, cloud value, antioxidant capacity, scavenging activity on 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical, ascorbic acid, total phenolics, flavonoids, flavonols and microbial characteristics. No significant effect of sonication was observed on pH, total soluble solids (°Brix) and titratable acidity of apple juice. Sonication significantly improved ascorbic acid, cloud value, phenolic compounds, antioxidant capacity, DPPH free radical scavenging activity and differences in Hunter color values. Moreover, significant reduction in microbial population was observed. Findings of the present study suggested that sonication treatment could improve the quality of apple juice. It may successfully be employed for the processing of apple juice with improved quality and safety from consumer’s health point of view.  相似文献   

20.
As a non-thermal processing method, the ultrasound treatment prior to the frying process has been demonstrated with great potential in reducing the oil absorption of fried food. This research aimed to evaluate the effect of ultrasound pretreatment on starch properties, water status, pore characteristics, and the oil absorption of potato slices. Ultrasound probe set with two power (360 W and 600 W) at the frequency of 20 kHz for 60 min was applied to perform the pretreatments. The results showed that ultrasound pretreatment led to the surface erosion of starch granules and higher power made the structure of starch disorganized. Moreover, the fraction of bound water and immobilized water were changed after ultrasonic pretreatment. Pores with the minor diameters (0.4–3 μm and 7–12 μm) were formed after ultrasound pretreatment. The penetrated surface oil (PSO) content, and structure oil (STO) content were reduced by 27.31% and 22.25% respectively with lower power ultrasound pretreatment. As the ultrasound power increased, the surface oil (SO) content and PSO content increased by 25.34% and 12.89% respectively, while STO content decreased by 38.05%. By using ultrasonic prior to frying, the quality of potato chips has been greatly improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号