首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
3.
4.
A study of information-theoretic properties of molecular bond on the example of the ground (bound) 1sσg and the lowest excited (unbound) 2pσu states of H2+ was conducted. Data about general information-theoretic measures, information products (Cramér-Rao, Fisher-Shannon information, and LMC complexity) and their inequalities in position and momentum spaces as a function of internuclear distance R=0.2–20 a.u. were obtained by an exact numerical calculation of the wave function. A systematic correlation between these information products was established. It was found that LMC complexity is most sensitive and detailed among these information products. A clear correlation between accuracy of determination of energy and information products in the simplest LCAO model compared to results of the exact calculation was observed.  相似文献   

5.
6.
7.
8.
9.
10.
This work is devoted to quantify the predictive uncertainty in RANS simulation of a non-premixed lifted flame due to uncertainty in the model parameters of the scalar dissipation rate transport equation. The uncertainty propagation and the global sensitivity analysis of the effect of such parameters on the quantities of interest (QoIs) is performed employing Polynomial Chaos Expansions as surrogate models of the uncertain response. This approach is applied on a lifted methane-air jet flame in vitiated coflow, already experimentally investigated by Cabra et al [1]. The results show the effectiveness of the approach to provide predictions with estimates of uncertainty. It is shown that the the uncertainty in the mixture fraction and temperature is negligible as long as only pure mixing happens, then it becomes significant in the regions where ignition begins, starting from z/D=30. Of the four parameters considered, i.e., CD1, CD2, CP1 and CP2, main and total effect sensitivity indices show that the largest contribution to the uncertainty in the flame temperature is given by the two dissipation parameters CD1 and CD2, while the production parameter CP2 has almost negligible impact on the predictions. Lastly, the surrogate models are used to determine an optimum set of parameters that minimizes the distance with the experimental measures, leading to improved predictions of the QoIs.  相似文献   

11.
12.
13.
14.
15.
《Physics letters. A》2020,384(36):126930
We consider quantum bosons with contact interactions at the Lowest Landau Level (LLL) of a two-dimensional isotropic harmonic trap. At linear order in the coupling parameter g, we construct a large, explicit family of quantum states with energies of the form E0+gE1/4+O(g2), where E0 and E1 are integers. Any superposition of these states evolves periodically with a period of 8π/g until, at much longer time scales of order 1/g2, corrections to the energies of order g2 may become relevant. These quantum states provide a counterpart to the known time-periodic behaviors of the corresponding classical (mean field) theory.  相似文献   

16.
Physically natural assumption says that any relaxation process taking place in the time interval [t0,t2], t2>t00 may be represented as a composition of processes taking place during time intervals [t0,t1] and [t1,t2] where t1 is an arbitrary instant of time such that t0t1t2. For the Debye relaxation such a composition is realized by usual multiplication which claim is not valid any longer for more advanced models of relaxation processes. We investigate the composition law required to be satisfied by the Cole-Cole relaxation and find its explicit form given by an integro-differential relation playing the role of the time evolution equation. The latter leads to differential equations involving fractional derivatives, either of the Caputo or the Riemann-Liouville senses, which are equivalent to the special case of the fractional Fokker-Planck equation satisfied by the Mittag-Leffler function known to describe the Cole-Cole relaxation in the time domain.  相似文献   

17.
18.
《Physics letters. A》2020,384(27):126687
We investigate the phase transitions in the Ising model on a layered square lattice with first-(J1) and second-(J2) neighbor intralayer interactions and interlayer couplings (J). The thermodynamics of the system is evaluated within a cluster mean-field approximation, which allows us to identify the nature of the thermally driven phase transitions hosted by the model. As a result, we find that interlayer couplings reduce the region of first-order phase transitions between paramagnetic and superantiferromagnetic states. We also find that the interlayer couplings reduce the frustration effects by reducing the entropy content of the low-temperature phases. Our results suggest that tricriticality is present in the special case J=J1, which is in qualitative agreement with recent Monte Carlo simulations for the model.  相似文献   

19.
This study presents the fundamental equations governing the pressure dependent disipation mechanisms in the oscillations of coated bubbles. A simple generalized model (GM) for coated bubbles accounting for the effect of compressibility of the liquid is presented. The GM was then coupled with nonlinear ODEs that account for the thermal effects. Starting with mass and momentum conservation equations for a bubbly liquid and using the GM, nonlinear pressure dependent terms were derived for power dissipation due to thermal damping (Td), radiation damping (Rd) and dissipation due to the viscosity of liquid (Ld) and coating (Cd). The pressure dependence of the dissipation mechanisms of the coated bubble have been analyzed. The dissipated energies were solved for uncoated and coated 2–20 μm in bubbles over a frequency range of 0.25fr-2.5fr (fr is the bubble resonance) and for various acoustic pressures (1 kPa-300 kPa). Thermal effects were examined for air and C3F8 gas cores. In the case of air bubbles, as pressure increases, the linear thermal model looses accuracy and accurate modeling requires inclusion of the full thermal model. However, for coated C3F8 bubbles of diameter 1–8 μm, which are typically used in medical ultrasound, thermal effects maybe neglected even at higher pressures. For uncoated bubbles, when pressure increases, the contributions of Rd grow faster and become the dominant damping mechanism for pressure dependent resonance frequencies (e.g. fundamental and super harmonic resonances). For coated bubbles, Cd is the strongest damping mechanism. As pressure increases, Rd contributes more to damping compared to Ld and Td. For coated bubbles, the often neglected compressibility of the liquid has a strong effect on the oscillations and should be incorporated in models. We show that the scattering to damping ratio (STDR), a measure of the effectiveness of the bubble as contrast agent, is pressure dependent and can be maximized for specific frequency ranges and pressures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号