首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herein, we investigated the effects of ultrasound microwave (UM)-assisted hydrolysis using Alcalase (ALC), Flavourzyme (FLA), and their combination (ALC + FLA), on the production of sweet potato protein hydrolysates (SPPH). UM-assisted enzymatic hydrolysis significantly increased the degree of hydrolysis of SPPH compared with untreated (UN) samples. Fractions with differences in molecular weight (MW) of >10, 3–10, and < 3 kDa in SPPH from UM-assisted ALC, FLA, and ALC + FLA hydrolysis displayed higher antioxidant activities than those from UN samples. MW < 3 kDa fractions of SPPH from UM-assisted ALC and ALC + FLA hydrolysis treatments presented much stronger Fe2+-chelating activity (98.48% and 98.59%), ·OH scavenging activity (67.11% and 60.06%), and higher ORAC values (110.32 and 106.32 µg TE/mL), from which diverse peptides with potential antioxidant activities were obtained by semi-preparative HPLC and LC-MS/MS. All identified peptide sequences exhibited at least three potential antioxidant amino acids. Additionally, changes in peptide conformational structure and antioxidant amino acid composition were revealed by structure–activity relationship analysis. Thus, ultrasound microwave treatment has great potential in antioxidant peptides production.  相似文献   

2.
The purpose of the study was to improve the extraction of polysaccharide from the leaves of Cercis chinensis Bunge using ultrasound, and compare the difference between boiling and ultrasound extraction in terms of polysaccharide content, monosaccharide compounds, and evaluate how the factors affected the bioactivity. The best conditions, according to the single factor experiments and the Box-Bohnken design (BBD), were an intensity of ultrasound of 180 W, duration of extraction of 40 min, proportion of water to material of 15:1 (g/g), and a higher polysaccharide yield of 20.02 ± 0.55 (mg/g) than in boiling extraction (16.09 ± 0.82 mg/g). The antioxidative experiment suggested the polysaccharide by ultrasound exhibited higher DPPH, hydroxyl radical scavenging capacities, and reducing power at 1.2–1.4 mg/mL, which was superior to the boiling polysaccharide. Further analysis showed that the ultrasonic purified polysaccharides like Gla, N-Glu, and GluA contained more total sugar and uronic acids than the boiling method did. This may indicate that the ultrasonic isolation of the polysaccharides increase the antioxidant activity of the polysaccharides.  相似文献   

3.
The effect of ultrasound on the conformational and physicochemical properties of soy protein isolate hydrolysates (SPHs) was investigated. SPHs were prepared at hydrolysis times of 20 min, 60 min, and 180 min, then treated with ultrasound for 10 min, 20 min, and 30 min at a frequency of 20 kHz and output powers of 150 W and 450 W. The structural properties and antioxidant capacities of the aqueous layer of SPHs (ASPHs) after sonication were evaluated by Fourier-transform infrared spectroscopy (FTIR), intrinsic fluorescence, DPPH radical scavenging activity assays, and microscopy observations. Results obtained showed that ultrasound treatment significantly disrupted the peptide aggregates formed during protein hydrolysis. The protein solubility was significantly increased after sonication (by up to 18.33%), as did the percentage of proteins with MW < 1 kDa in ASPHs. The antioxidant capacity of ASPHs also increased, as measured by DPPH assay. FTIR analysis of ASPHs indicated that the protein secondary structures were different, with an increase in β-sheet and a decrease in α-helix and β-turn. Furthermore, the changes in fluorescence spectra of ASPHs showed the transition of protein tertiary structure with a greater exposure of Trp residues in the side chains. Scanning electron microscope (SEM) and atomic force microscope (AFM) observations of the morphological structure of ASPHs further confirmed the significant effect of sonication on disrupting peptide aggregates. In conclusion, ultrasound can be used as an efficient treatment to promote the solubility of protein hydrolysates.  相似文献   

4.
This study aimed to investigate influence of ultrasonic treatment on physicochemical and antioxidant properties of mung bean protein hydrolysate (MPH). Physicochemical properties of MPH were evaluated by Tricine-SDS-PAGE, particle size distribution, fourier transform infrared spectroscopy (FTIR) and fluorescence spectroscopy, among others. Radicals scavenging activities of ABTS, hydroxyl, superoxide anion, Fe2+ chelating ability and reducing power characterized antioxidant activities of MPH. MPH contained four bands of 25.6, 12.8, 10.6 and 4.9 kDa, in which 4.9 kDa was the most abundant. Ultrasonic treatment increased the contents of aromatic and hydrophobic amino acids in MPH. Ultrasonic treatment decreased the content of α-helix of MPH and increased β-sheet and β-turn compared to MPH. MPH-546 W (ultrasonic treatment 546 W, 20 min) had the lowest average particle size (290.13 nm), zeta potential (-36.37 mV) and surface hydrophobicity (367.95 A.U.). Antioxidant activities of ultrasonicated-MPH increased with the ultrasonic power, achieving the lowest IC50 (mg/mL) of 0.1087 (ABTS), 1.796 (hydroxyl), 1.003 (superoxide anion) and 0.185 (Fe2+ chelating ability) in 546 W power. These results indicated ultrasonic treatment would be a promising method to improve the antioxidant properties of MPH, which would broaden the application scope of MPH as bioactive components in the food industry.  相似文献   

5.
This study investigated the targeting and ultrasound-triggered injury of cancer cells using anticancer drug-free liposomes that contained an emulsion of perfluoropentane (ePFC5) and were co-modified with avidin as a targeting ligand for cancer cells and the hemagglutinating virus of Japan (HVJ) envelope to promote liposome fusion with the cells. These liposomes are designated as ePFC5-loaded avidin/HVJ liposomes. ePFC5-loaded liposomes were sensitized to ultrasound irradiation. Liposomes modified with avidin alone (avidin liposomes) showed binding to MCF-7 human breast cancer cells, and liposomes modified with HVJ envelope alone (HVJ liposomes) were found to fuse with MCF-7 cells. The irradiation of MCF-7 cells with 1 MHz ultrasound (30 s, 1.2 W/cm2, duty ratio 30%) combined with ePFC5-loaded avidin/HVJ liposomes resulted in a decrease in cell viability at 1 h after irradiation to 43% of that of controls without ultrasound irradiation or liposomes. The cell viability was lower than that of cells treated with ultrasound irradiation with ePFC5-loaded avidin liposomes or ePFC5-loaded HVJ liposomes. This indicates that co-modification of liposome with avidin and HVJ envelope could enhance ultrasound-induced cell injury in the presence of ePFC5-loaded liposomes.  相似文献   

6.
The objective of this study is to explore the effect and mechanism of ultrasound on chitin extraction from shrimp shells powder (SSP) by the co-fermentation of Bacillus subtilis and Acetobacter pasteurianus. After pre-treating the SSP with high-intensity ultrasound (HIU) at 800 W, the protease activity in the fermentation solution reached 96.9 U/mL on day 3, which was significantly higher than for SSP that had not been pre-treated with ultrasound (81.8 U/mL). The fermentation time of the chitin extraction process was 5.0 d without ultrasound pre-treatment, while it was shortened to 4.5 d when using ultrasound at 800 W to treat SSP. However, there were no obvious differences when we applied ultrasound at low power (200 W, 400 W). Furthermore, chitin purified from shrimp shells pre-treated with HIU at 800 W exhibited lower molecular weight (11.2 kDa), higher chitin purity (89.8%), and a higher degree of deacetylation (21.1%) compared to SSP with no ultrasound pre-treatment (13.5 kDa, 86.6%, 18.5%). Results indicate that HIU peels off the protein/CaCO3 matrix that covers the SSP surface. About 9.1% of protein and 4.7% of Ca2+ were released from SSP pre-treated with HIU at 800 W. These figures were both higher than with no ultrasound pre-treatment (4.5%, 3.2%). Additionally, the amount of soluble protein extracted from SSP through HIU at 800 W was 50% higher than for the control sample. SDS-PAGE analysis indicated that the soluble protein was degraded to the micromolecule. It also revealed that HIU (600, 800 W) induced the secondary and tertiary structure destruction of protein extracted from SSP. In conclusion, HIU-induced degradation and structural damage of protein enhances the protein/CaCO3 matrix to be peeled off from SSP. Also, in the co-fermentation process, an increase of protease activity further accelerates deproteinization.  相似文献   

7.
Natural betalains can be potential food additives because of their antioxidant activities, but they have poor thermal stability. In this study, betalains were extracted from red dragon fruit peel, and then encapsulated with maltodextrin by ultrasound method to increase the physicochemical properties of betalains microcapsules. The encapsulation efficiency of the betalains was above 79%, and the particle size and Zeta potential values were 275.46 nm and −29.01 mV, respectively. Compared to the control sample, onset temperature and DPPH free radical scavenging of betalains microcapsules under the modest ultrasound treatment (200 W, 5 min) was increased by 1.6 °C and 12.24%, respectively. This increase could be due to the ability of ultrasonification to create interactions between maltodextrin and betalains (as evidenced by FT-IR). Therefore, modest ultrasound treatment can be used for microcapsulation to improve the stability of betalains, and then expand the application of betalains in heat processed food field.  相似文献   

8.
Impact of various ultrasound pretreatment and microwave drying parameters on the qualitative and antioxidant characteristics of Inula viscosa (L.) was investigated in this study. The leaves of Inula viscosa (L.) were sonicated for 10, 20, and 30 min in an ultrasonic bath (37 kHz, 150 Watts). Microwave drying was done at three distinct times (1, 3, and 5 min) and with three different microwave power levels (100, 180, and 300 Watts). Microwave dried samples were tested for color characteristics (L*, a*, b*), chlorophyll, carotenoid, total phenol, and antioxidant content. All dried samples were prepared by infusing them in hot water as tea, and the sensorial properties of teas including odor, color, aroma, and overall acceptability were evaluated by panelists. For 10, 20, and 30 min of ultrasound pretreatment, the L* values of leaves varied from 37.70 to 49.76, 34.97 to 46.25, and 27.88 to 43.34, respectively. The total carotenoid concentration ranged from 0.12 to 0.32 mg/g DW, while the total chlorophyll content was from 0.44 to 0.94 mg/g DW. The antioxidant activity of Inula viscosa (L.) leaves that were dried at 300 Watts for 5 min did not change significantly as a result of ultrasound pretreatment. There was a significant positive correlation between aroma and TPC, as well as between color and overall acceptability. The darkest-colored teas were deemed preferable by the panelists.  相似文献   

9.
An ultrasonic-assisted technique was first introduced for the production of natural rubber latex foam (NRLF). The flexible elastomeric foam was formed by a liquid–solid state transformation in an aqueous media. The aim of the current research was to provide a novel strategy for fabricating NRLF using ultrasonication and the Dunlop method, as well as to simultaneously utilize irradiation events to achieve the desired foam properties. NRLFs were exposed to ultrasonication at 25 kHz at the beginning of the gelling process. The effects of irradiation times of 0, 1, 3, 5 and 7 min on the morphology, foaming behaviors, physical properties and mechanical performance of NRLFs were investigated. The results revealed that using ultrasonic irradiation, unfoamed regions and a bimodal structure, which seem to be microstructural defects in conventional NRLF, could be completely eliminated. However, excessive irradiation times of 5 min and longer appeared to affect the physico-mechanical properties of the foams in terms of transient cavitation and the unfavorable physicochemical effects of ultrasonic vibrations. As a result, the optimal ultrasonic irradiation time was found to be 3 min. Using this irradiation duration, a foam with the suitable microcellular structure achieved the most desirable properties, such as its expansion ratio (7-fold increase), foam porosity (85.7%), compression recoverability (98.7%), and tensile strength (307.3 kPa). Moreover, the foam still maintained its characteristic soft nature (hardness less than 100 N) with an indentation hardness of 71.9 N. Therefore, ultrasonic treatment introduced to the conventional Dunlop method is a potentially feasible technique since it improves the morphology and the physico-mechanical properties of NRLFs.  相似文献   

10.
《Ultrasonics sonochemistry》2014,21(3):1187-1193
The present study demonstrates that ultrasound irradiation can facilitate bacteria-mediated gene delivery (bactofection). Escherichia coli modified with avidin were employed as a vehicle for delivery of the green fluorescent protein (GFP) gene, a model heterologous gene, into the breast cancer cell line MCF-7. Avidin-mediated binding of E. coli to MCF-7 cells enhanced the internalization of E. coli by approximately 17%, irrespective of the use of ultrasound irradiation. Furthermore, the use of ultrasound irradiation increased the internalization by approximately 5%, irrespective of the presence of avidin on the E. coli cell surface. The percentages of GFP-expressing MCF-7 cells at 24 h after bactofection were below 0.5% and 2% for the case with only avidin-modification of E. coli cell surface and only ultrasound irradiation, respectively. However, combining avidin modification with the ultrasound treatment increased this value to 8%. Thus, the use of avidin-modified bacteria in conjunction with ultrasound irradiation has potential as an effective strategy for tumor-targeted bactofection.  相似文献   

11.
This study investigated the effects of ultrasonic frequency, ultrasonic power, irradiation height and temperature on the drying characteristics, quality and microstructure of wolfberry by ultrasonic-assisted far-infrared drying. By fitting five commonly used thin-layer drying mathematical models, it was found that the coefficient of determination (R2) of the Weibull model was 0.99400–0.99825, the root mean square error (RMSE) was 1.2162 × 10-4–4.5209 × 10-4, and the reduced chi-square (χ2) was 0.00207–0.00663, which was the best fit. Under the application of ultrasound, the average drying rate of wolfberry increased. Compared with natural drying, the polysaccharide content increased by 33.2 % at 250 mm irradiation height, and the total phenol content increased by 44.9 % at 40 kHz ultrasonic frequency. The antioxidant activity was the strongest, and the total flavonoids content was the highest (2.594 mg/g) at 24 W ultrasonic power. By comparing the microstructure of wolfberry under different drying methods, such as a fresh sample, natural drying, hot air drying, and ultrasonic-assisted drying, we found that the ultrasonic assistance increased the number of micropores on the surface of wolfberry, reduced the damage to epidermal cells, reduced the mass transfer resistance of the drying process and accelerated the drying process. This study shows that ultrasonic-assisted far-infrared drying technology played a significant role in the heat and mass transfer of wolfberry drying, and had great potential in the commercial processing of wolfberry.  相似文献   

12.
The effects of microwave, ultrasound and combined ultrasound-microwave (UM) treatment with different intensities on structural and hydrolysis properties of myofibrillar protein (MP) were investigated. Free radical scavenging ability, angiotensin-I-converting enzyme (ACE) inhibitory activity, and cellular antioxidant and anti-inflammatory abilities of the related bioactive peptides were also evaluated. Raman spectroscopic analysis indicated that MP molecule tended to unfold and stretch with increasing in β-turn and random coil content under mild microwave (100 W), ultrasound (100–200 W) and combined UM treatments. Meanwhile, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) revealed these treatments could also improve the thermal stability against heat-induced denaturation and degeneration. The 200 W ultrasound treatment clearly increased MP solubility by disrupting the highly-ordered aggregates into smaller filament and fragment structures. The 300 W ultrasound coupled with 100 W microwave treatment further enhanced these effects. The resulting partially denatured structure induced by suitable ultrasound and combined UM treatments increased the susceptibility of MP to exogenous enzymes, thereby accelerating hydrolytic process and yielding a high peptide concentration in MP hydrolysates. MP peptides could effectively inhibit free radical and ACE activity, which also improved the ability of antioxidant defence system, and suppressed the production of proinflammatory cytokines in RAW 264.7 cells stimulated by H2O2. The combination of 100 W microwave and 300 W ultrasound treatment was optimal method for generating bioactive MP peptides with the strongest multi-activity effects against H2O2-induced cell damage.  相似文献   

13.
The present study demonstrates ultrasound-induced cell injury using a nickel–titanium dioxide (Ni–TiO2) alloy plate as a sonocatalyst and a cell culture surface. Ultrasound irradiation of cell-free Ni–TiO2 alloy plates with 1 MHz ultrasound at 0.5 W/cm2 for 30 s led to an increased generation of hydroxyl (OH) radicals compared to nickel–titanium (Ni–Ti) control alloy plates with and without ultrasound irradiation. When human breast cancer cells (MCF-7 cells) cultured on the Ni–TiO2 alloy plates were irradiated with 1 MHz ultrasound at 0.5 W/cm2 for 30 s and then incubated for 48 h, cell density on the alloy plate was reduced to approximately 50% of the controls on the Ni–Ti alloy plates with and without ultrasound irradiation. These results indicate the injury of MCF-7 cells following sonocatalytic OH radical generation by Ni–TiO2. Further experiments demonstrated cell shrinkage and chromatin condensation after ultrasound irradiation of MCF-7 cells attached on the Ni–TiO2 alloy plates, indicating induction of apoptosis.  相似文献   

14.
Limited literature is available concerning the phenolic biosynthesis and antioxidative potential of common bean sprouts induced by ultrasound elicitation. In this study, common bean seeds were treated with ultrasound at different power (0, 180 and 360 W) and time (0, 30, 45 and 60 min) levels, before they were subjected to sprouting (24, 48, 72 and 96 h). Stress markers (H2O2, catalase and guaiacol peroxidase), activities of defense phenolic triggering enzymes (phenylalanine ammonia-lyase and tyrosine ammonia-lyase), phenolic contents (total phenolic acids, total flavonoids and anthocyanins) and antioxidant capacities (DPPH, ABTS and Fe2+ scavenging) were monitored. Results showed that, ultrasound elicitation (especially 360 W, 60 min) significantly increased accumulation of stress markers at 96 h of sprouting, leading to elevated activities of defense phenolic triggering enzymes, and final accumulation of phenolics and antioxidant capacities at significant levels compared to control. Ultrasound treatment at 360 W and 60 min reduced sprouting time by 60 h, compared to control. Results from principal component analysis clearly differentiated latter stages of sprouting and high ultrasound levels from other sprouting conditions as distinct treatments for the production of phenolic-rich common bean sprouts. Overall, results from this study indicated that elicitation with ultrasound can be a green and novel approach for producing phenolic-enriched common bean sprouts as an organic nutraceutical vegetable.  相似文献   

15.
The effects of the preparation method (mixing, chemical polymerization, or ultrasound treatment) on the structure and functional properties of soy protein isolate-(–)-epigallocatechin-3-gallate (SPI-EGCG) complexes were examined. The mixing treated SPI-EGCG samples (M−SE) were non-covalently linked, while the chemical polymerization and ultrasound treated SPI-EGCG samples (C-SE and U-SE, respectively) were bound covalently. The covalent binding of EGCG with protein improved the molecular weight and changed the structures of the SPI by decreasing the α-helix content. Moreover, U-SE samples had the lowest particle size (188.70 ± 33.40 nm), the highest zeta potential (−27.82 ± 0.53 mV), and the highest polyphenol binding rate (59.84 ± 2.34 %) compared with mixing and chemical polymerization-treated samples. Furthermore, adding EGCG enhanced the antioxidant activity of SPI and U-SE revealed the highest DPPH (84.84 ± 1.34 %) and ABTS (88.89 ± 1.23 %) values. In conclusion, the SPI-EGCG complexes prepared by ultrasound formed a more stable composite system with stronger antioxidant capacity, indicating that ultrasound technology may have potential applications in the preparation of protein-polyphenol complexes.  相似文献   

16.
《Ultrasonics sonochemistry》2014,21(4):1482-1488
In this study, we demonstrated the feasibility of targeted and ultrasound-triggered drug delivery using liposomes co-modified with single stranded DNA aptamers that recognized platelet-derived growth factor receptors (PDGFRs) as targeting ligands for breast cancer cells and poly(NIPMAM-co-NIPAM) as the thermosensitive polymer (TSP) to sensitize these liposomes to high temperature. TSP-modified liposomes (TSP liposomes) released encapsulated calcein under 1 MHz ultrasound irradiation for 30 s at 0.5 W/cm2 as well as the case under incubation for 5 min at 42 °C. Ultrasound-triggered calcein release from TSP liposomes was due to an increased local temperature, resulting from cavitation bubble collapse induced by ultrasound, and not due to an increase in the bulk medium temperature. Liposomes modified with PDGFR aptamers (APT liposomes) bound to MDA-MB-231 human breast cancer cells through PDGFR aptamers; however, they did not bind to primary human mammary epithelial cells (HMECs). The binding of APT liposomes was greatest for MDA-MB-231 cells, followed by MCF-7, WiDr, and HepG2 cancer cells. In a cell injury assay using doxorubicin (DOX)-loaded APT/TSP liposomes and ultrasound irradiation, cell viability of MDA-MB-231 at 24 h after ultrasound irradiation (1 MHz for 30 s at 0.5 W/cm2) with DOX-loaded APT/TSP liposomes was 60%, which was lower than that with ultrasound irradiation and DOX-loaded TSP liposomes or with DOX-loaded APT/TSP liposomes alone.  相似文献   

17.
In this study, treatment of an antibiotic compound amoxicillin by medium-high frequency ultrasonic irradiation and/or ozonation has been studied. Ultrasonic irradiation process was carried out in a batch reactor for aqueous amoxicillin solutions at three different frequencies (575, 861 and 1141 kHz). The applied ultrasonic power was 75 W and the diffused power was calculated as 14.6 W/L. The highest removal was achieved at 575 kHz ultrasonic frequency (>99%) with the highest pseudo first order reaction rate constant 0.04 min−1 at pH 10 but the mineralization achieved was around 10%. Presence of alkalinity and humic acid species had negative effect on the removal efficiency (50% decrease). To improve the poor outcomes, ozonation had been applied with or without ultrasound. Ozone removed the amoxicillin at a rate 50 times faster than ultrasound. Moreover, due to the synergistic effect, coupling of ozone and ultrasound gave rise to rate constant of 2.5 min−1 (625 times higher than ultrasound). In the processes where ozone was used, humic acid did not show any significant effect because the rate constant was so high that ozone has easily overcome the scavenging effects of natural water constituents. Furthermore, the intermediate compounds, after the incomplete oxidation mechanisms, has been analyzed to reveal the possible degradation pathways of amoxicillin through ultrasonic irradiation and ozonation applications. The outcomes of the intermediate compounds experiments and the toxicity was investigated to give a clear explanation about the safety of the resulting solution. The relevance of all the results concluded that hybrid advanced oxidation system was the best option for amoxicillin removal.  相似文献   

18.
In the present work, ultrasound irradiation, photocatalysis with TiO2, Fenton/Photo-Fenton reaction, and the combination of those techniques were investigated for the decolorization of industrial dyes in order to study their synergy. Three azo dyes were selected from the weaving industry. Their degradation was examined via UV illumination, Fenton and Photo-Fenton reaction as well as ultrasound irradiation at low (20 kHz) and high frequencies (860 kHz). In these experiments, we investigated the simultaneous action of the ultrasound and UV irradiation by varying parameters like the duration of photocatalysis and ultrasound irradiation frequency. At the same time, US power, temperature, amount of TiO2 photocatalyst and amount of Fenton reagent remained constant. Due to their diverse structure, each azo dye showed different degradation levels using different combinations of the above-mentioned Advanced Oxidation Processes (AOPs). The Photo-Fenton reagent is more effective with US 20 kHz and US 860 kHz for the azo dyes originated from the weaving industry at pH = 3 as compared to pH = 6.8. The combination of the Photo-Fenton reaction with 860 kHz ultrasound irradiation for the same dye gave an 80% conversion at the same time. Experiments have shown a high activity during the first two hours. After that threshold, the reaction rate is decreased. FT-IR and TOC measurements prove the decolorization due to the destruction of the chromophore groups but not complete mineralization of the dyes.  相似文献   

19.
This study was aimed at optimizing the astaxanthin extraction efficiency from shrimp shell (green tiger, Penaeus semisulcatus). Astaxanthin was extracted using selected nonpolar/polar solvents (petroleum ether, n-hexane, ethanol, acetone) individually and in ternary mixtures of petroleum ether, acetone, and water in ratios of 15:50:35, 50:45:5, and 15:75:10 for different times (2,4 and 6 h). The results showed that solvents with higher polarity were more suitable for the extraction of astaxanthin, and increasing the extraction time from 2 to 6 h improved the extraction yield. The conditions of extraction of astaxanthin with the desirable solvent were then optimized with the ultrasonic method using the Box-Behnken design [variables included: extraction temperature (25 to 45 °C), extraction time (5 to 15 min), and ultrasound amplitude (20 to 100%)]. Optimal extraction conditions were determined as the ultrasonic amplitude of 23.6%, extraction time of 13.9 min, and extraction temperature of 26.3 °C. Under this optimum condition, the amount of astaxanthin, ferric reducing antioxidant power, and free radical scavenging capacity of the extract were obtained as 51.5%, 1705 μmol of Fe2+/g, and 73.9%, respectively. Extraction and analysis of the extract at the optimum point were used to validate the results.  相似文献   

20.
In this work, NaX zeolite was synthesized and the effect of ultrasound irradiation on reaction kinetics, morphological and structural properties was investigated. Ultrasound was applied, by using a plate transducer (91.8 kHz), for the first time during the crystallization of zeolite NaX, at high temperature, varying the irradiation moment and its duration. Furthermore, ultrasound was applied after the crystallization by a horn-type transducer (20–24 kHz) at low temperature. The effects of irradiated volume (100–300 mL), sonication time (2–10 min) and ultrasound power (10–200 W) were studied with a power intensity up to 100 W/cm2. It was found that the application of ultrasound during the first hour of crystallization resulted in 20% reduction of reaction time compared to a standard crystallization. Ultrasound can also reduce the agglomeration degree of the final powder by combining high power and long sonication time. After 5 min sonication time at 0.3 W/mL, the tapped density of the powder was increased by 10%, from 0.37 to 0.41 g/mL. Finally, by scanning electron microscopy (SEM) it was demonstrated that ultrasound can disrupt the agglomerates without affecting the morphology of individual crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号