首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study evaluated the effect of mono-frequency ultrasound (MFU, 20 kHz), dual-frequency ultrasound (DFU, 20/40 kHz), and tri-frequency ultrasound (TFU, 20/40/60 kHz) on mass transfer, drying kinetics, and quality properties of infrared-dried pineapple slices. Pretreatments were conducted in distilled water (US), 35 °Brix sucrose solution (US-OD), and 75% (v/v) ethanol solution (US-ET). Results indicated that ultrasound pretreatments modified the microstructure of slices and shortened drying times. Compared to the control group, ultrasound application reduced drying time by 19.01–28.8% for US, 15.33–24.41% for US-OD, and 38.88–42.76% for US-ET. Tri-frequency ultrasound provoked the largest reductions, which exhibited time reductions of 6.36–11.20% and better product quality compared to MFU. Pretreatments increased color changes and loss of bioactive compounds compared to the control but improved the flavor profile and enzyme inactivation. Among pretreated sample groups, US-OD slices had lower browning and rehydration abilities, higher hardness values, and better retention of nutrients and bioactive compounds. Therefore, the combination of TFU and osmotic dehydration could simultaneously improve ultrasound efficacy, reduce drying time, and produce quality products.  相似文献   

2.
The influence of ultrasonic frequency (20 kHz) and glucose pretreatments either alone or in combination on the drying of sweet potato slices (3 mm) using a hot-air dryer at 60 °C was tested to study the kinetics modeling, phytochemicals, antioxidant activities, and functional and textural changes of the final dried product. The results indicated that total phenolic content and total flavonoid content were significantly higher in glucose-pretreated samples while antioxidant activities were higher in ultrasound- and glucose-pretreated samples. For vitamin C, much degradation occurred in the glucose-pretreated samples when compared with the other pretreated samples apart from the control. Enzymatic browning made a minor contribution to the ultrasound/glucose-pretreated samples, while no significant differences were noted in the glucose-pretreated samples. A modified Henderson and Pabis (MHP) model, followed by the two-term and Hii models, fitted best among the 15 selected mathematical models. Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed the presence of glucose, phenols, and flavonols in all samples. Microstructural analysis confirmed the hardness (N) in the final glucose-pretreated samples due to glucose layers and less cell damage.  相似文献   

3.
This work studied three emerging approaches to improve the convective drying (50 °C, 0.8 m/s) of celery. Celery slices of 2 mm thick were pretreated for 5 min using ultrasound (32 W/L, 40 kHz), vacuum (75 kPa vacuum pressure) and ethanol (99.8% v/v, as drying accelerator) applied individually or in combination. To evaluate individual effects of ultrasound and vacuum, the treatments were also performed with distilled water or air medium, respectively. Moreover, the cavitational level was characterized in each condition. Drying kinetics was evaluated tending into account the drying time required by each treatment and the Page’s model parameters. In addition, microstructural effects and shrinkage were evaluated. As results, ethanol combined with ultrasound significantly improved drying kinetics reducing drying time by around 38%. However, vacuum pretreatment did not affect drying kinetics even in combination with ethanol and/or ultrasound. Microstructural evaluation did not evidence cell disruption, suggesting changes in intercellular spaces, pores and/or cell wall permeability. The use of ethanol and vacuum showed a greater effect on shrinkage after pretreatment and after drying, respectively. In conclusion, at the studied conditions, the drying acceleration by vacuum and ultrasound is lower compared to the effect produced using ethanol.  相似文献   

4.
Vacuum freeze-drying is a new and high technology on agricultural product dehydrating dry, but it faces the high cost problem caused by high energy consumption. This study investigated the effect of ultrasound (US), freeze-thawing (including the freeze-air thawing (AT), freeze-water thawing (WT), freeze-ultrasound thawing (UST), and freeze-air ultrasound thawing (AT + US)) pretreatments on the vacuum freeze-drying efficiency and the quality of dried okra. The results indicated that the application of ultrasound and different freeze-thawing pretreatments reduced the drying time by 25.0%–62.50% and the total energy consumption was 24.28%–62.35% less. The AT pretreatment reduced the time by of okra slices by 62.50% and the total energy consumption was 62.35% less. The significant decrease in drying time was due to a change in the microstructure caused by pretreatment. Besides, the okra pretreated with the US retained most of the quality characteristics (flavor, color, hardness, and frangibility) among all methods, while, AT + US had the most changeable characteristics in quality, which is deprecated in our study. The okra pretreated with the US and AT, separately, had the best dry matter content loss (9.008%, 5.602%), lower chlorophyll degradation (5.05%, 5.44% less), and higher contents of total phenolics, total flavonoids, and pectin, with strong antioxidant capacity, compared to other methods. The pretreatments did not have a large effect on the functional groups and the structure of pectin, but slightly affected the viscosity. It can be concluded that AT and US pretreatment methods are better than others.  相似文献   

5.
A novel drying technique using a combination of ultrasound and vacuum dehydration was developed to shorten the drying time and improve the quality of carrot slices. Carrot slices were dried with ultrasonic vacuum (USV) drying and vacuum drying at 65 °C and 75 °C. The drying rate was significantly influenced by the drying techniques and temperatures. Compared with vacuum drying, USV drying resulted in a 41–53% decrease in the drying time. The drying time for the USV and vacuum drying techniques at 75 °C was determined to be 140 and 340 min for carrot slices, respectively. The rehydration potential, nutritional value (retention of β-carotene and ascorbic acid), color, and textural properties of USV-dried carrot slices are predominately better compared to vacuum-dried carrot slices. Moreover, lower energy consumption was used in the USV technique. The drying data (time versus moisture ratio) were successfully fitted to Wang and Singh model.  相似文献   

6.
The effects of dual-frequency (40 + 20 kHz) and multi-angle ultrasound (0°, 30°, 45°) on the coagulation state, network structure, flavor and protein conformation of tofu gel were studied. The results showed that the gel flavor of 40 + 20 kHz 0° group was the best and fluorescence intensity was low. The gel flavor in the 40 + 20 kHz 30° group was better than the group without ultrasound, and hydrophobic interaction and disulfide bond content was the largest. Meanwhile, the degree of protein cross-link was increased. The gel in 40 + 20 kHz 45° group had tightly gel state, high thermal stability, but poor flavor. Combined with The Order Preference by Similarity to Ideal Solution (TOPSIS)-entropy weight method, the 40 + 20 kHz 30° group, was the best ultrasonic treatment of gel. It can change the interaction between proteins, promote protein cross-link, and form a uniform and dense gel network. Finally, the hardness and moisture content of finished tofu were increased significantly, and the quality was improved.  相似文献   

7.
In this work, multi-frequency ultrasound (working modes for the single-, dual- and tri-frequency in simultaneous ways) was applied to extract bioactive compounds from purple eggplant peels. The single-factor experiments were performed by varying six independent variables. A six-level-five-factor uniform design (UD) was further employed to evaluate the interaction effects between different factors. It was found that extraction temperature and extraction time significantly affected the total phenolic content (TPC), whereas the total monomeric anthocyanins (TMA) was mainly influenced by ethanol concentration, extraction temperature and solid-liquid ratio. Based on partial least-squares (PLS) regression analysis, the optimal conditions for TPC extraction were: 53.6 % ethanol concentration, 0.336 mm particle size, 44.5 °C extraction temperature, 35.2 min extraction time, 1:43 g/mL solid-liquid ratio, and similar optimal conditions were also obtained for TMA. Furthermore, the TPC and TMA extraction were investigated by ultrasound in different frequencies and power levels. Compared with single-frequency (40 kHz) and dual-frequency ultrasound (25 + 40 kHz), the extraction yield of TPC and TMA with tri-frequency ultrasound (25 + 40 + 70 kHz) increased by 23.65 % and 18.76 % respectively, which suggested the use of multi-frequency ultrasound, especially tri-frequency ultrasound, is an efficient strategy to improve the TPC and TMA extracts in purple eggplant peels.  相似文献   

8.
Drying is one of the most prevalent methods to reduce water activity and preserve foods. However, it is also the most energy-intensive food processing unit operation. Although a number of drying methods have been proposed and tested for the purpose of achieving a time- and energy-efficient drying process, almost all current drying methods still rely on thermal energy to remove moisture from the product. In this study, a novel use of power ultrasound was explored for drying of apple slices without the application of heat. The non-thermal ultrasound contact drying (US-CD) was performed in the presence of an air stream (26–40 °C) flowing over product surface to remove mist or vapor produced by the ultrasound treatment. The effects of the non-thermal US-CD, hot-air drying (HAD), and freeze drying (FD) on the changes in rehydration ratio, pH, titratable acidity, water activity, color, glass transition temperature, texture, antioxidant capacity, total phenols, and microstructures of the samples were evaluated. The moisture content of the apple slices reached below 5% (w.b.) after 75–80 min of US-CD, which was about 45% less than that of the HAD method. The antioxidant capacity and total phenol contents of the US-CD samples were significantly higher than that of the AD samples. The non-thermal ultrasonic contact drying is a promising method which has the potential to significantly reduce drying time and improve product quality.  相似文献   

9.
Pretreatment combined with vacuum freeze-drying is an effective technique to extend the storage period of jujube fruits and reduce energy consumption and cost; however, the effects of pretreatment on the quality characteristics of jujube during vacuum freeze-drying remain unknown. In this study, the effects of cold plasma (CP), high hydrostatic pressure (HHP), ultrasound (US), high-pressure carbon dioxide (HPCD), and conventional blanching (BC) as pretreatments on the performance of vacuum freeze-dried jujube slices were investigated. The results indicated that the application of different pretreatments decreased the water activity and increased the rehydration capacity, owing to the pretreatment etching larger and more porous holes in the microstructure. Freeze-dried jujube slices pretreated with HPCD retained most of their quality characteristics (color, hardness, and volatile compounds), followed by the HHP- and US-pretreated samples, whereas samples pretreated with BC showed the greatest deterioration in quality characteristics, and hence, BC is not recommended as a pretreatment for freeze-dried jujube slices. Sensory evaluation based on hedonic analysis showed that jujube slices pretreated with HPCD and US were close to the control sample and scored highest. Compared to other pretreated samples and the control, freeze-dried jujube slices pretreated with HPCD showed the least degradation (4.93%) of cyclic adenosine monophosphate (cAMP), the highest contents of total phenol, total flavonoid, and l-ascorbic acid, and the highest antioxidant capacity. Partial least squares-discriminant analysis (PLS-DA) was performed to screen all the quality characteristic data of different pretreated samples, and 12 volatile compounds, including ethyl hexanoate and (E)-2-hexenal, along with color, l-ascorbic acid content, and cAMP content were found suitable to be used as discriminators for pretreated freeze-dried jujube slices. Therefore, non-thermal pretreatments, including HPCD, US, and HHP pretreatments, are promising techniques for the vacuum freeze-drying of jujube products.  相似文献   

10.
To improve the soybean protein content (SPC), flavor and quality of soymilk, the effects of dual-frequency ultrasound at different angles (40 + 20 kHz 0°, 40 + 20 kHz 30°, 40 + 20 kHz 45°) on physicochemical properties and soybean protein (SP) structure of raw soymilk were mainly studied and compared with the conventional single-frequency (40 kHz, 20 kHz) ultrasound. Furthermore, the intensity of the ultrasonic field in real-time was monitored via the oscilloscope and spectrum analyzer. The results showed that 40 + 20 kHz 45° treatment significantly increased SPC. The ultrasonic field intensity of 40 + 20 kHz 0° treatment was the largest (8.727 × 104 W/m2) and its distribution was the most uniform. The emulsifying stability of SP reached the peak value (233.80 min), and SP also had the largest particle size and excellent thermal stability. The protein solubility of 40 + 20 kHz 30° treatment attained peak value of 87.09%. 20 kHz treatment significantly affected the flavor of okara. The whiteness and brightness of raw soymilk treated with 40 kHz were the highest and the system was stable. Hence, the action mode of ultrasonic technology can be deeply explored and the feasibility for improving the quality of soymilk can be achieved.  相似文献   

11.
The influences of multi-frequency countercurrent S-type ultrasound (MFSU), with various frequency modes, on lysinoalanine (LAL) formation and conformational characteristics of rice dreg protein isolates (RDPI) were investigated. The ultrasonic operating mode with dual-frequency combination (20/40 kHz) indicated lower LAL content and higher protein dissolution rate of RDPI compared with that of other ultrasound operating modes. Under the dual-frequency ultrasound mode of 20/40 kHz, acoustic power density of 60 W/L, time of 20 min, and temperature of 35 °C, the relative reduction rate of LAL of RDPI reached the highest with its value of 26.95%, and the protein dissolution rate was 71.87%. The changes in chemical interactions between protein molecules indicated that hydrophobic interactions and disulfide bonds played a considerable role in the formation of LAL of RDPI, especially the reduction of g-g-g and g-g-t disulfide bond. Alterations in microstructure showed that ultrasonication loosened the protein structure and created more uniform protein fragments of RDPI. In conclusion, using MFSU in treating RDPI was an efficacious avenue for minimizing LAL content and modifying the conformational characteristics of RDPI.  相似文献   

12.
In this study, the influence of multi-frequency ultrasound irradiation on the functional properties and structural characteristics of gluten, as well as the textural and cooking characteristics of the noodles were investigated. Results showed that the textural and cooking characteristics of noodles that contain less gluten pretreated by multi-frequency ultrasonic were ultrasonic frequency dependent. Moreover, the noodles that contain a smaller amount of sonicated gluten could achieve the textural and cooking quality of commercial noodles. There was no significant difference in the cooking and texture characteristics between commercial noodles and noodles with 12%, 11%, and 10% gluten pretreated by single-frequency (40 kHz), dual-frequency (28/40 kHz), and triple-frequency sonication (28/40/80 kHz), respectively. Furthermore, the cavitation efficiency of triple-frequency ultrasound was greater than that of dual-frequency and single-frequency. As the number of ultrasonic frequencies increased, the solubility, water holding capacity and oil holding capacity of gluten increased significantly (p < 0.05), and the particle size was reduced from 197.93 ± 5.28 nm to 110.15 ± 2.61 nm. Furthermore, compared to the control group (untreated), the UV absorption and fluorescence intensity of the gluten treated by multi-frequency ultrasonication increased. The surface hydrophobicity of gluten increased from 8159.1 ± 195.87 (untreated) to 11621.5 ± 379.72 (28/40/80 kHz). Raman spectroscopy showed that the α-helix content of all sonicated gluten protein samples decreased after sonication, while the β-sheet and β-turn content increased, and tryptophan and tyrosine residues were exposed. Through scanning electron microscope (SEM) analysis, the gluten protein network structure after ultrasonic treatment was loose, and the pore size of the gluten protein network increased from about 10 μm (untreated) to about 26 μm (28/40/80 kHz). This work elucidated the effect of ultrasonic frequency on the performance of gluten, indicating that with increasing frequency combination increases, the ultrasound effect became more pronounced and protein unfolding increased, thereby impacting the functional properties and the quality of the final product. This study provided a theoretical basis for the application of multi-frequency ultrasound technology in the modification of gluten protein and noodle processing.  相似文献   

13.
Low temperature drying (LTD) allows high-quality dried products to be obtained, preserving the nutritional properties of fresh foods better than conventional drying, but it is a time-consuming operation. Power ultrasound (US) could be used to intensify LTD, but it should be taken into account that process variables, such as the level of applied power, have an influence on the magnitude and extension of the ultrasonic effects. Therefore, the aim of this work was to assess the influence of the level of applied ultrasonic power on the LTD of apple, analyzing the drying kinetics and the quality of the dried product. For that purpose, apple (Malus domestica cv. Granny Smith) cubes (8.8 mm side) were dried (2 m/s) at two different temperatures (10 and −10 °C), without and with (25, 50 and 75 W) US application. In the dried apple, the rehydration kinetics, hardness, total phenolic content, antioxidant capacity and microstructure were analyzed to evaluate the impact of the level of applied ultrasonic power.At both temperatures, 10 and −10 °C, the higher the ultrasonic power level, the shorter the drying time; the maximum shortening of the drying time achieved was 80.3% (at −10 °C and 75 W). The ultrasonic power level did not significantly (p < 0.05) affect the quality parameters analyzed. Therefore, US could be considered a non-thermal method of intensifying the LTD of fruits, like apple, with only a mild impact on the quality of the dried product.  相似文献   

14.
In this study, ultrasound-assisted vacuum drying (UAVD) was employed as a new approach to improve the efficiency and produce dried hawthorn fruit juice powders with acceptable quality. To achieve these goals, the effects of ultrasound intensity (at four levels of 15.29, 20.38, 22.93 and 24.46 kW/m2) were evaluated. The results showed that UAVD significantly shortened the drying time (P < 0.05), and with the increasing ultrasound intensity, the drying rate increased and the drying time decreased. Based on statistical tests, the Page model was found to fit well to the drying kinetics. After drying, a decline in quality of fresh juices was observed. As compared with vacuum drying individually, UAVD significantly reduced the colour degradation, and increased the retention of the total flavonoids content, five flavonoid compounds contents and antioxidant activity. It was shown that UAVD at the higher ultrasound intensity varied from of 20.38 to 24.46 kW/m2 contributed to a better quality in the dried juice powders. Overall, this study demonstrates that UAVD is a promising technique for improving the drying efficiency and quality retention of hawthorn fruit juices.  相似文献   

15.
The influence of ultrasound (US) pretreatments combined with infrared (IRD) and hot-air (HAD) drying on drying kinetics, mathematical modeling, bioactive compounds (antioxidant activities, Vitamin C, phenolics, and flavonoid contents), qualitative properties (β-carotene, total carotenoids, color indexes, textural profile), enzyme inactivation, and exergetic analysis of sweet potatoes. The US pretreatment at 40 kHz combined with IRD and HAD (70 °C) significantly lessened the drying time and water contents. Besides, it did not affect the sweet potato's bioactive components and other quality-related attributes. The samples’ activation energy (Ea) ranged from 17.60 to 29.86 kJ/mol for both dryers, with R2 (0.999–0.9809). Control samples had the highest specific energy consumption (SEC) due to the extended drying period, whereas ultrasound (40 kHz) treated samples had the lowest SEC during HAD and IRD at 80 °C. The thermodynamic parameters indicated that increasing the drying temperature lowers the enthalpy and Gibbs free energy, while entropy resulted in negative values. HAD had better textural qualities (hardness and resilience). The US pretreatments followed by HAD or IRD may lead to an energy-efficient method with acceptable quality maintenance.  相似文献   

16.
This study aimed at investigating the performances of air drying of blackberries assisted by airborne ultrasound and contact ultrasound. The drying experiments were conducted in a self-designed dryer coupled with a 20-kHz ultrasound probe. A numerical model for unsteady heat and mass transfer considering temperature dependent diffusivity, shrinkage pattern and input ultrasonic energies were applied to explore the drying mechanism, while the energy consumption and quality were analyzed experimentally. Generally, both airborne ultrasound and contact ultrasound accelerated the drying process, reduced the energy consumption and enhanced the retentions of blackberry anthocyanins and organic acids in comparison to air drying alone. At the same input ultrasound intensity level, blackberries received more ultrasound energies under contact sonication (0.299 W) than airborne sonication (0.245 W), thus avoiding the attenuation of ultrasonic energies by air. The modeling results revealed that contact ultrasound was more capable than airborne ultrasound to intensify the inner moisture diffusion and heat conduction, as well as surface exchange of heat and moisture with air. During air drying, contact ultrasound treatment eliminated the gradients of temperature and moisture inside blackberry easier than airborne ultrasound, leading to more homogenous distributions. Moreover, the total energy consumption under air drying with contact ultrasound assistance was 27.0% lower than that with airborne ultrasound assistance. Besides, blackberries dehydrated by contact ultrasound contained more anthocyanins and organic acids than those dried by airborne ultrasound, implying a higher quality. Overall, direct contact sonication can well benefit blackberry drying in both energy and quality aspects.  相似文献   

17.
In this study, ultrasound application at two different frequencies (37 or 80 kHz) and durations (15 or 30 min) was used as a pre-treatment for raw broiler breasts, and its effect on cooling, color, textural and sensory characteristics of cooked broiler breasts during vacuum cooling process was determined. The anterior and posterior parts of broiler breast halves were carefully removed, and these parts with a 20 mm width were named as the regions A and B, respectively. Both regions were vacuum-packed and pre-treated by ultrasound, followed by oven-cooking in aluminum foils, and cooling time, weight loss and temperature distribution characteristics were determined. Besides sensory and textural properties, the effect of the ultrasound pre-treatment on the pH, dry matter and ash contents and color (CIELAB) values of cooked breasts was determined. During vacuum cooling, ultrasound pre-treatment significantly reduced cooling time required to cool cooked broiler breasts from 85 °C to 12.5 °C, and the lowest values for the regions A and B were obtained for the 30 min ultrasound pre-treatment at 37 kHz as 12.72 and 14.61 min, respectively (p < 0.05). The cooling losses of breasts from the regions A and B were 12.64 and 11.61%, respectively. In comparison to immersion pre-treatment, increasing the frequency and duration of ultrasound pre-treatment generally decreased cooking loss values for both A and B regions while cooling loss increased. Instrumental hardness values of breast samples for the 15 min ultrasound pre-treatment decreased while they increased with the 30 min pre-treatment (p < 0.05) at both frequencies. The redness values (a*) increased by ultrasound pre-treatment while the highest value was found for a 30 min pre-treatment at 80 kHz for both regions. Sensory hardness (on a 14.5 cm scale) results indicated that the highest value (9.33) was determined for a 30 min ultrasound pre-treatment at 37 kHz while the ultrasound pre-treatment at 37 kHz for 15 min had no negative effect on hardness compared to control samples (p > 0.05). In conclusion, ultrasound pre-treatment can be successfully used for the vacuum cooling process of broiler breasts for the reduction of cooling time, and a 30 min ultrasound pre-treatment at 37 kHz can provide relatively superior cooling characteristics.  相似文献   

18.
Impact of various ultrasound pretreatment and microwave drying parameters on the qualitative and antioxidant characteristics of Inula viscosa (L.) was investigated in this study. The leaves of Inula viscosa (L.) were sonicated for 10, 20, and 30 min in an ultrasonic bath (37 kHz, 150 Watts). Microwave drying was done at three distinct times (1, 3, and 5 min) and with three different microwave power levels (100, 180, and 300 Watts). Microwave dried samples were tested for color characteristics (L*, a*, b*), chlorophyll, carotenoid, total phenol, and antioxidant content. All dried samples were prepared by infusing them in hot water as tea, and the sensorial properties of teas including odor, color, aroma, and overall acceptability were evaluated by panelists. For 10, 20, and 30 min of ultrasound pretreatment, the L* values of leaves varied from 37.70 to 49.76, 34.97 to 46.25, and 27.88 to 43.34, respectively. The total carotenoid concentration ranged from 0.12 to 0.32 mg/g DW, while the total chlorophyll content was from 0.44 to 0.94 mg/g DW. The antioxidant activity of Inula viscosa (L.) leaves that were dried at 300 Watts for 5 min did not change significantly as a result of ultrasound pretreatment. There was a significant positive correlation between aroma and TPC, as well as between color and overall acceptability. The darkest-colored teas were deemed preferable by the panelists.  相似文献   

19.
The initial water content was closely related to the oil absorption and properties of fried food. The effects of convective air drying (D) and ultrasound combined convective air drying (UD) pretreatment on the properties and oil absorption of potato chips have been investigated. The oil contents were 48.48 ± 1.42% and 39.78 ± 3.08% for control samples (without D and UD pretreatment) and ultrasound treated samples (without D pretreatment). When the mass loss of samples was reached the proportion of quality to without drying samples quality 80%, 50%, and 20%, the oil contents of D pretreated samples decreased by 12.67%, 28.24% and 62.07%, respectively, and the oil contents of UD pretreated samples decreased by 7.42%, 24.10% and 51.76% (compared to the ultrasound pretreated samples ), respectively. By applying ultrasound before frying, more cracks and pores were exhibited of fried potato chips. After drying process, potato chips exhibited less disruption of cell structure and less deformation of cell irregular. The hardness of the D and UD pretreated potato chips increased with the extension of drying. The FTIR analysis stated the formation of amylose-lipid complexes. This research could contribute to providing evidence for the development and application of the pretreatment strategies.  相似文献   

20.
The effects of multi-frequency ultrasound on surface decontamination and structural characteristics of large yellow croaker (Pseudosciaena crocea) during refrigerated storage were evaluated. The results of total viable counts (TVCs) and psychrophilic bacteria counts (PBCs) demonstrated that multi-frequency ultrasound retarded the growth of microorganisms. The bacteriostatic effect was positively correlated with the increase of ultrasound frequencies. However, compared with triple-frequency ultrasound (TUS, 20/28/40 kHz) treatment, dual-frequency ultrasound (DUS, 20/28 kHz) treatment had higher water-holding capacity (WHC) and immobilized water content, better texture characteristics, lower pH and total volatile basic nitrogen (TVB-N). Through the results of myofibrillar fragmentation index (MFI), intrinsic fluorescence intensity (IFI) and atomic force microscope (AFM), multi-frequency ultrasound could effectively stabilize the myofibrillar protein structure of refrigerated large yellow croaker, which could maintain better texture characteristics. The effects of DUS were the most significant. Therefore, multi-frequency ultrasound treatment could inhibit the growth of microorganisms and improve the structural characteristics of large yellow croaker during refrigerated storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号