首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
This study aimed to investigate the mechanism of different treatments, namely, ultrasound (US), chlorogenic acid (CA), and ultrasound combined with chlorogenic acid (US plus CA) on the inactivation of Staphylococcus aureus planktonic and biofilm cells. Results showed that the combined treatment of US and CA exhibited remarkable synergistic antibacterial and antibiofilm effects. Scanning electron microscopy images indicated that the combined treatment of US and CA caused the most serious damage to the cell morphology. Confocal laser scanning microscopy images revealed that the combined treatment led to sharp increase and severe damage to the permeability of the cell membrane, causing the release of ATP and nucleic acids and decreasing the exopolysaccharide contents in S. aureus biofilm. Finally, the combined treatment of US plus 1% CA for 60 min inactivated S. aureus cells by 1.13 lg CFU/g on mutton. Thus, the combined treatment of US and CA had synergistic effect against S. aureus under planktonic, biofilm, and food systems.  相似文献   

2.
An energy‐domain 57Fe‐Mössbauer spectrometer using synchrotron radiation (SR) with a diamond anvil cell (DAC) has been developed for ultrahigh‐pressure measurements. The main optical system consists of a single‐line pure nuclear Bragg reflection from an oscillating 57FeBO3 single crystal near the Néel temperature and an X‐ray focusing device. The developed spectrometer can filter the Doppler‐shifted single‐line 57Fe‐Mössbauer radiation with a narrow bandwidth of neV order from a broadband SR source. The focused incident X‐rays make it easy to measure a small specimen in the DAC. The present paper introduces the design and performance of the SR 57Fe‐Mössbauer spectrometer and its demonstrative applications including the newly discovered result of a pressure‐induced magnetic phase transition of polycrystalline 57Fe3BO6 and an unknown high‐pressure phase of Gd57Fe2 alloy placed in a DAC under high pressures up to 302 GPa. The achievement of Mössbauer spectroscopy in the multimegabar range is of particular interest to researchers studying the nature of the Earth's core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号