首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We provide an analytical proof of the existence of a stable periodic orbit contained in the region of coexistence of the three species of a tritrophic chain. The method used consists in analyzing a triple Hopf bifurcation. For some values of the parameters three limit cycles born via this bifurcation. One is contained in the plane where the top-predator is absent. Another one is not contained in the domain of interest where all variables are positive. The third one is contained where the three species coexist. The techniques for proving these results have been introduced in previous articles by the second author and are based on the averaging theory of second-order. Existence of this triple Hopf bifurcation has been previously discovered numerically by Kooij et al.  相似文献   

2.
We are interested in the coexistence of three species forming a tritrophic food chain model. Considering a linear grow for the lowest trophic species, Holling III and Holling II functional response for the predator and the top‐predator, respectively. We prove that this model has stable periodic orbits for adequate values of its parameters. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This paper aims to study the effect of discrete time-delay on a tritrophic food chain model with Holling type-II functional responses. Dynamical behaviours such as boundedness, stability, persistence and bifurcation of the model are studied. Our analytical findings are illustrated through computer simulation. Biological implications of our analytical findings are addressed critically.  相似文献   

4.
In order to understand the effect of the diffusion reaction on the interaction between tumor cells and immune cells, we establish a tumor-immune reaction diffusion model with homogeneous Neumann boundary conditions. Firstly, we investigate the existence condition and the stability condition of the coexistence equilibrium solution. Secondly, we obtain the sufficient and necessary conditions for the occurrence of Turing bifurcation and Hopf bifurcation. Thirdly, we perform some numerical simulations to illustrate the complex spatiotemporal patterns near the bifurcation curves. Finally, we explain spatiotemporal patterns in the diffusion action of tumor cells and immune cells.  相似文献   

5.
A tri‐trophic food chain model in a two‐patch environment is considered. Although tri‐trophic food chain model is well studied, the study considering migration of middle predator is lacking. To the best of our knowledge, the present investigation is the first study in this direction. Both prey and predator density‐dependent migrations are considered to observe the effects on stability and persistence of the system. We observe that migration of middle predator has the ability to control chaos in tri‐trophic food chain model. Our results indicate that the chance of predator extinction enhances for prey density‐dependent middle predator migration. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
In this article, we study a reaction-diffusion predator-prey model that describes intraguild predation. We mainly consider the effects of time delay and cross-fractional diffusion on dynamical behavior. By using delay as the bifurcation parameter, we perform a detailed Hopf bifurcation analysis and derive the algorithm for determining the direction and stability of the bifurcating periodic solutions. We also demonstrate that proper cross-fractional diffusion can induce Turing pattern, and the smaller the order of fractional diffusion is, the more easily Turing pattern is able to occur.  相似文献   

7.
Complex spatiotemporal dynamics of a diffusive predator-prey system involving additional food supply to predator and intra-specific competition among predator, are investigated. We establish critical conditions of the occurrence of Turing instability, which are necessary and sufficient. Furthermore, we also establish conditions of the occurrence of codimension-2 Turing-Hopf bifurcation and Turing-Turing bifurcation, by exploring interactions of Turing bifurcations and Hopf bifurcation. For Turing-Hopf bifurcation, by analyzing normal form truncated to order 3 which are derived by applying normal form method, it is shown that under proper conditions, diffusive predator-prey system generates interesting spatial, temporal and spatiotemporal patterns, including a pair of spatially inhomogeneous steady states, a spatially homogeneous periodic solution and a pair of spatially inhomogeneous periodic solutions. And numerical simulations are also shown to support theory analysis. Moreover, it is found that proper intra-specific competition among predator helps generate complex spatiotemporal dynamics. And, proper additional food supply to predator helps control the population fluctuations of predator and prey, while large quantity and high quality of additional food supply will lead to the extinction of prey and make predator change the source of food, which finally destroy the ecosystem. These investigations might help understand complex spatiotemporal dynamics of predator-prey system involving additional food supply to predator and intra-specific competition among predator, and help conserve species in an ecosystem via supplying suitable additional food.  相似文献   

8.
In earlier literature, a version of a classical three‐species food chain model, with modified Holling type IV functional response, is proposed. Results on the global boundedness of solutions to the model system under certain parametric restrictions are derived, and chaotic dynamics is shown. We prove that in fact the model possesses explosive instability, and solutions can explode/blow up in finite time, for certain initial conditions, even under the parametric restrictions of the literature. Furthermore, we derive the Hopf bifurcation criterion, route to chaos, and Turing bifurcation in case of the spatially explicit model. Lastly, we propose, analyze, and simulate a version of the model, incorporating gestation effect, via an appropriate time delay. The delayed model is shown to possess globally bounded solutions, for any initial condition. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, by using a corollary to the center manifold theorem, we show that the 3‐D food‐chain model studied by many authors undergoes a 3‐D Hopf bifurcation, and then we obtain the existence of limit cycles for the 3‐D differential system. The methods used here can be extended to many other 3‐D differential equation models. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
The formation of Turing vegetation patterns in flat arid environments is investigated in the framework of a generalized version of the hyperbolic Klausmeier model. The extensions here considered involve, on the one hand, the strength of the rate at which rainfall water enters into the soil and, on the other hand, the functional dependence of the inertial times on vegetation biomass and soil water. The study aims at elucidating how the inclusion of these generalized quantities affects the onset of bifurcation of supercritical Turing patterns as well as the transient dynamics observed from an uniformly vegetated state towards a patterned state. To achieve these goals, linear and multiple-scales weakly nonlinear stability analysis are addressed, this latter being inspected in both large and small spatial domains. Analytical results are then corroborated by numerical simulations, which also serve to describe more deeply the spatio-temporal evolution of the emerging patterns as well as to characterize the different timescales involved in vegetation dynamics.  相似文献   

11.
A diffusive predator-prey system with Holling type-II predator functional response subject to Neumann boundary conditions is considered. Hopf and steady state bifurcation analysis are carried out in details. In particular we show the existence of multiple spatially non-homogeneous periodic orbits while the system parameters are all spatially homogeneous. Our results and global bifurcation theory also suggest the existence of loops of spatially non-homogeneous periodic orbits and steady state solutions. These results provide theoretical evidences to the complex spatiotemporal dynamics found by numerical simulation.  相似文献   

12.
In this article, a three-species food chain model with intraspecific competition in top predators has been considered. Ecological and mathematical well posedness of the model system has been established by showing that all the solutions of the model are positive and bounded. The extinction scenarios of intermediate and top predator species along with the existence and stability of all equilibrium points have been discussed. The effects of competition and conversion efficiency of top predators in the dynamics of the system have been discussed with great thrust, and it is observed that the conversion efficiency of top predators deteriorates the stability of the system, whereas intraspecific competition in top predators enhances the stable coexistence of all the populations of the system. Further, nonautonomous version of the model system has been taken into consideration to study the impact of seasonal variation in the dynamics of the model system. Sufficient conditions for the existence of a globally attractive positive periodic have been established in a periodic environment. Finally, numerical simulations have been carried out to validate our analytical findings.  相似文献   

13.
This paper deals with the qualitative analysis of the travelling waves solutions of a reaction diffusion model that refers to the competition between the predator and prey with modified Leslie–Gower and Holling type II schemes. The well posedeness of the problem is proved. We establish sufficient conditions for the asymptotic stability of the unique nontrivial positive steady state of the model by analyzing roots of the forth degree exponential polynomial characteristic equation. We also prove the existence of a Hopf bifurcation which leads to periodic oscillating travelling waves by considering the diffusion coefficient as a parameter of bifurcation. Numerical simulations are given to illustrate the analytical study.  相似文献   

14.
In this paper, we concentrate on the spatiotemporal patterns of a delayed reaction‐diffusion Holling‐Tanner model with Neumann boundary conditions. In particular, the time delay that is incorporated in the negative feedback of the predator density is considered as one of the principal factors to affect the dynamic behavior. Firstly, a global Turing bifurcation theorem for τ = 0 and a local Turing bifurcation theorem for τ > 0 are given. Then, further considering the degenerated situation, we derive the existence of Bogdanov‐Takens bifurcation and Turing‐Hopf bifurcation. The normal form method is used to study the explicit dynamics near the Turing‐Hopf singularity. It is shown that a pair of stable nonconstant steady states (stripe patterns) and a pair of stable spatially inhomogeneous periodic solutions (spot patterns) could be bifurcated from a positive equilibrium. Moreover, the Turing‐Turing‐Hopf–type spatiotemporal patterns, that is, a subharmonic phenomenon with two spatial wave numbers and one temporal frequency, are also found and explained theoretically. Our results imply that the interaction of Turing and Hopf instabilities can be considered as the simplest mechanism for the appearance of complex spatiotemporal dynamics.  相似文献   

15.
This paper is concerned with two-species spatial homogeneous and inhomogeneous predator-prey models with Beddington-DeAngelis functional response. For the spatial homogeneous model, the asymptotic behavior of the interior equilibrium and the existence of Hopf bifurcation of nonconstant periodic solutions surrounding the interior equilibrium are considered. Furthermore, the direction of Hopf bifurcation and the stability of bifurcated periodic solutions are investigated. For the model with no-flux boundary conditions, Turing instability of the interior equilibrium solution is studied. In particular, Turing instability region regarding the parameters is established. Finally, to verify our theoretical results, some numerical simulations are also included.  相似文献   

16.
应用能量估计方法和Gagliardo-Nirenberg型不等式证明了带自扩散和交错扩散项的三级营养食物链模型在齐次Neumann边值条件下整体解的存在唯一性和一致有界性.  相似文献   

17.
In this paper, we investigate the predator–prey model equipped with Fickian diffusion and memory-based diffusion of predators. The stability and bifurcation analysis explores the impacts of the memory-based diffusion and the averaged memory period on the dynamics near the positive steady state. Specifically, when the memory-based diffusion coefficient is less than a critical value, we show that the stability of the positive steady state can be destabilized as the average memory period increases, which leads to the occurrence of Hopf bifurcations. Moreover, we also analyze the bifurcation properties using the central manifold theorem and normal form theory. This allows us to prove the existence of stable spatially inhomogeneous periodic solutions arising from Hopf bifurcation. In addition, the sufficient and necessary conditions for the occurrence of stability switches are also provided.  相似文献   

18.
在齐次Neumann边界条件下研究一类Degn-Harrison反应扩散系统.首先讨论常微分系统正平衡点的稳定性和Hopf分支,其次研究扩散系统,给出扩散系数对正平衡点稳定性的影响,建立系统的Turing不稳定性,同时在扩散系数满足一定条件时给出Hopf分支的存在性.  相似文献   

19.
In this paper, we study the dynamical behavior of a stochastic food chain chemostat model, in which the white noise is proportional to the variables. Firstly, we prove the existence and uniqueness of the global positive solution. Then by constructing suitable Lyapunov functions, we show the system has a unique ergodic stationary distribution. Furthermore, the extinction of microorganisms is discussed in two cases. In one case, both the prey and the predator species are extinct, and in the other case, the prey species is surviving and the predator species is extinct. Finally, numerical experiments are performed for supporting the theoretical results.  相似文献   

20.
In this paper, a three-species food chain model with Holling type IV and Beddington–DeAngelis functional responses is formulated. Numerical simulations show that this system can generate chaos for some parameter values. But the mechanism behind chaos is still unclear only through numerical simulations. Then, using the topological horseshoe theories and Conley–Moser conditions, we present a computer-assisted analysis to show the chaoticity of this system in the topological sense, that is, it has positive topological entropy. We prove that the Poincaré map of this model possesses a closed uniformly hyperbolic chaotic invariant set, and it is topologically conjugate to a 2-shift map. At last, we consider the impact of fear on this three-species model. It is an important factor in controlling chaos in biological models, which has been validated in other models.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号