首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present research aimed to investigate the effects of high-intensity ultrasound (HIU, 20 kHz, 0 W, 100 W, 300 W and 500 W)-assisted vacuum tumbling (UVT) for 60 min and 120 min on the oxidation and physicochemical properties of the pork myofibrillar proteins (MPs). Compared with the vacuum tumbling (VT) groups without the HIU assistance, the carbonyl content increased, while the total sulfhydryl (SH) content was reduced with the increase of HIU power and treatment time (P < 0.05). The reactive SH content was increased significantly after treated by UVT with 300 W compared with the VT group (P < 0.05) regardless of the treatment time. Similarly, the surface hydrophobicity (S0), the intrinsic tryptophan intensity, and the solubility in the UVT group (300 W) were remarkably higher than those of the VT group (P < 0.05). In contrast, the α-helix content and the particle size of MPs significantly decreased when the HIU power was at 100 W and 300 W (P < 0.05). The results suggest that UVT treatment could change the structure and physicochemical properties of MPs accompanied by protein oxidation.  相似文献   

2.
The poor water solubility of myofibrillar proteins (MPs) limits their application in food industry, and is directly related to the molecular behavior associated with myosin assembly into filaments. This study aims to explore the effect of high-intensity ultrasound (HIU) combined with nonenzymatic glycation on the solubility, structural characteristics, and filament-forming behavior of MPs in low ionic strength media. The results showed that the HIU (200–400 W) application could promote the subsequent glycation reaction between MPs and dextran (DX) and interfere with the electrostatic balance between myosin rods, suppressing the formation of filamentous myosin polymers. Glycated MPs pretreated by 400 W HIU had the highest solubility, which corresponded to the smallest particle size, highest zeta potential, and optimum storage stability (P < 0.05). Structure analysis and microscopic morphology observations suggested that the loss of the MP superhelix and the depolymerization of filamentous polymers were the main mechanisms for MP solubilization. In conclusion, HIU combined with glycation can effectively improve the water solubility of MPs by destroying or suppressing the assembly of myosin molecules.  相似文献   

3.
The insolubility and poor dispersion of myofibrillar proteins (MPs) in water have always been the primary factors limiting the development of novel meat-based products. This study aimed to explore the mechanisms by which high-intensity ultrasound (HIU) at various power settings (0, 150, 300, 450 and 600 W) improved the solubility and dispersion stability of MPs in water. According to the solubility analysis, HIU significantly increased the water solubility of MPs (p < 0.05). The MPs treated with 450 W exhibited the best dispersion stability in water, which corresponded to the highest zeta-potential, smallest particle size and most uniform distribution (p < 0.05). Based on the circular dichroism and fluorescence spectroscopy and surface hydrophobicity analysis, the loss of the MP superhelix and subsequent random dissociation of the filamentous myosin structure appeared to be the main mechanism of MP solubilization. In addition, according to the zeta-potential, SDS-PAGE and Nano LC-ESI-MS/MS analyses, the increase in surface charge and the formation of soluble oligomers may provide additional forces to inhibit filament assembly, thereby improving the stability of the aqueous MP suspension. Atomic force microscopy (AFM) observations further confirmed these results. In conclusion, an HIU treatment effectively improves the solubility and dispersion stability of MP in water.  相似文献   

4.
The aim of the paper was to investigate the effect of ultrasonic emulsification treatment on the fabrication mechanism and stability of the emulsion. The covalent conjugate made with rice bran protein hydrolysate (RBPH) and ferulic acid (FA) was used as the emulsifier. The effects of high intensity ultrasound (HIU) power with different level (0 W, 150 W, 300 W, 450 W and 600 W) on the stability of emulsion were evaluated. The results showed that ultrasonic emulsification can significantly improve the stability of the emulsions (p < 0.05). The emulsion gained better stability and emulsifying property at 300 W. It was able to fabricate emulsion with smaller particle size, more uniform distribution and higher interfacial protein content. It was confirmed by fluorescent microscopy and cryo-scanning electron microscopy (cryo-SEM) furtherly. And it was also proved that the emulsion treated by proper HIU treatment at 300 W had better storage stability. Excessive HIU treatment (450 W, 600 W) had negative effects on the stability of emulsion. The stability of emulsion (300 W) against different environmental stresses was further explored, which established a theoretical basis for the industrial application of emulsion in food industry.  相似文献   

5.
This study aimed to evaluate the potential of time-dependent (0, 15, 30, 60, 120 min) treatment of porcine-derived myofibrillar proteins (MPs) with high-intensity ultrasound (HIU) for utilizing them as a Pickering stabilizer and decipher the underlying mechanism by which HIU treatment increases the emulsification and dispersion stability of MPs. To accomplish this, we analyzed the structural, physicochemical, and rheological properties of the HIU-treated MPs. Myosin heavy chain and actin were observed to be denatured, and the particle size of MPs decreased from 3,342.7 nm for the control group to 153.9 nm for 120 min HIU-treated MPs. Fourier-transformed infrared spectroscopy and circular dichroism spectroscopy confirmed that as the HIU treatment time increased, α-helical content increased, and β-sheet decreased, indicating that the protein secondary/tertiary structure was modified. In addition, the turbidity, apparent viscosity, and viscoelastic properties of the HIU-treated MP solution were decreased compared to the control, while the surface hydrophobicity was significantly increased. Analyses of the emulsification properties of the Pickering emulsions prepared using time-dependent HIU-treated MPs revealed that the emulsion activity index and emulsion stability index of HIU-treated MP were improved. Confocal laser scanning microscopy images indicated that small spherical droplets adsorbed with MPs were formed by HIU treatment and that dispersion stabilities were improved because the Turbiscan stability index of the HIU-treated group was lower than that of the control group. These findings could be used as supporting data for the utilizing porcine-derived MPs, which have been treated with HIU for appropriate time periods, as Pickering stabilizers.  相似文献   

6.
The specific molecular behavior of myofibrillar proteins (MPs) in low-salt media limits the development of muscle protein-based emulsions. This study aimed to evaluate the potential of high-intensity ultrasound (HIU; 150, 300, 450, and 600 W) to improve the physical stability of MP emulsion at low ionic strength and decipher the underlying mechanism. According to the physical stability analysis, HIU pretreatment, especially at 450 W power, significantly improved the physical stability of MP emulsions, as evidenced by the reduced particle size, enhanced inter-droplet interactions, and increased uniformity of the droplet size distribution (p < 0.05). The results of interfacial protein composition, Fourier transform infrared spectroscopy analysis, and microscopic morphology observation of the aqueous MP suspension suggested that HIU induced the depolymerization of filamentous myosin polymers and inhibited the subsequent self-assembly behavior. These effects may facilitate protein adsorption and molecular rearrangement at the oil–water interface, forming a complete interfacial layer and, thus, droplet stabilization. Confocal laser scanning microscopy observations further confirmed these results. In conclusion, these findings provide direct evidence for the role of HIU in improving the physical stability of MP emulsions at low ionic strength.  相似文献   

7.
Effects of high intensity ultrasound (HIU) on physicochemical properties of tilapia (Oreochromis niloticus) actomyosin in low NaCl concentrations were investigated. The protein content extracted in low NaCl concentrations (0.1–0.3 M NaCl) increased with increasing HIU intensity up to 20.62 W/cm2 (p < 0.05). The effect of HIU on actomyosin extractability in high NaCl concentrations (0.6 and 1.2 M NaCl) was less obvious. Ca2+-ATPase activity and total sulfhydryl (SH) group content decreased in both 0.2 and 0.6 M NaCl. HIU showed more pronounced effect on oxidation of the SH groups in 0.6 M NaCl, while the reactive SH content at 0.2 M NaCl increased after a prolonged exposure to HIU, suggesting conformational changes induced by HIU. Surface hydrophobicity of actomyosin in 0.6 M NaCl increased with increasing ultrasonic intensity and exposure time to a higher degree than that in 0.2 M NaCl. A greater absolute value of the zeta potential of actomyosin subjected to HIU were also observed. The HIU treatments decreased the turbidity of actomyosin incubated at 40 and 60 °C. A drastic increase in the solubility of myosin heavy chain (MHC) and actin with 0.2 M NaCl were evident when HIU treatments were applied, but degradation of MHC occurred in both 0.2 and 0.6 M NaCl. Based on particle size and microstructure, actomyosin in 0.6 M NaCl underwent more disruption by HIU than that in 0.2 M NaCl. HIU induced protein unfolding and protein dissociation, enabling better extraction in a lower NaCl concentration.  相似文献   

8.
The most important factors restricting research and application in the food industry are the poor solubility and emulsification of pea protein isolate (PPI). This study investigates the effect of high-intensity ultrasound (HIU, 0–600 W) and pH-shifting treatment, alone or combined, on the structure, solubility, and emulsification of PPI, as well as its potential mechanism. The results revealed that the PPI solubility significantly increases when treated with the combination, corresponding to a decrease in the protein particle size, especially at 500 W of HIU power (p < 0.05). Correspondingly, the emulsion prepared from it was less prone to phase separation during storage. According to the structural analysis, the structural changes caused by protein unfolding (i.e., the exposure of hydrophobic and polar sites and the loss of the α-helix) seemed to be the primary reasons for increased PPI solubility. In addition, confocal laser scanning microscopy indicated that the combination treatment accelerated the adsorption of PPI at the oil/water interface and strengthened the compactness of the interface film. Improved interfacial properties and intermolecular forces played a critical role in the resistance to droplet coalescence in PPI emulsion. In conclusion, ultrasound and pH-shifting treatments have a synergistic effect on improving the solubility and emulsification of PPI.  相似文献   

9.
The objective of the present study was to assess the effects of ultrasound pretreatment on the quality of dry-cured yak meat. The ultrasonic power with 0, 200, 300 and 400 W (ultrasonic frequency of 20 kHz) were used to assist processing of dry-cured yak meat. The meat quality, nutrient substances, sensory quality, electronic nose, electronic tongue and volatile compounds of dry-cured yak meat were determined. The results indicated that the moisture content and hardness value of ultrasonic treatment group was significantly lower compared to the control group (P < 0.05). Ultrasonic treatment increased the value of b*, and decreased the value of L*, a*, pH, chewiness, melting temperature and enthalpy. Springiness value significantly increased from control group to 300 W of ultrasonic power group. Shear force significantly decreased with the increase of ultrasonic power (P < 0.05). Ultrasonic treatment had no effect on the TVB-N content, but it could increase the TBARS content. Ultrasonic treatment could significantly increase the essential FAA (EFAA) and total FAA (P < 0.05). In addition, the saturated fatty acid (SFA) content significantly increased with the increase of ultrasonic power (P < 0.05). Ultrasound treatment negatively affected the meat’s color, smell, and taste but increased its tenderness and the overall acceptability. It also significantly increased alcohols and aldehydes contents (P < 0.05), which were consistent with the measurement of electronic nose and electronic tongue. The results demonstrated that the the appropriate ultrasonic power assisted in the processing improves quality of dry-cured yak meat, particularly for the power of 300 W.  相似文献   

10.
The effects of preheating to 50 ℃ and the subsequent application of high-intensity ultrasound (HIU, 20 kHz) at 200, 400, 600, and 800 W on the physicochemical, structural, and gelling properties of wooden breast myofibrillar protein (WBMP) were studied. Results suggested that the WBMP structure expanded to the balanced state at 600 W, and rheological properties exhibit that 600 W HIU (P < 0.05) significantly improved the storage modulus (G′) of WBMP. Notably, the WBMP gel (600 W) had the best hardness (65.428 ± 0.33 g), springiness (0.582 ± 0.01), and water-holding capacity (86.11 ± 0.83%). Raman spectra and low-field NMR indicated that 600 W HIU increased the β-fold content (37.94 ± 0.04%) and enlarged the immobilized-water proportion (93.87 ± 0.46%). Scanning electron micrographs confirmed that the gel was uniform and dense at 600 W. Therefore, preheating to 50 ℃ followed by HIU (600 W) helped form a superior WBMP gel.  相似文献   

11.
In this study, a novel citral nanoemulsion (CLNE) was prepared by ultrasonic emulsification. The synergistic antibacterial mechanism of ultrasound combined with CLNE against Salmonella Typhimurium and the effect on the physicochemical properties of purple kale were investigated. The results showed that the combined treatment showed obviously inactivate effect of S. Typhimurium. Treatment with 0.3 mg/mL CLNE combined with US (20 kHz, 253 W/cm2) for 8 min reduced S. Typhimurium populations in phosphate-buffered saline (PBS) by 9.05 log CFU/mL. Confocal laser scanning microscopy (CLSM), flow cytometry (FCM), protein and nucleic acid release assays showed that the US combination CLNE disrupt the integrity of S. Typhimurium membranes. Reactive oxygen species (ROS) and malondialdehyde (MDA) detection indicated that US+CLNE exacerbated oxidative stress and lipid peroxidation in cell membranes. The morphological changes of cells after different treatments by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) illustrated that the synergistic effect of US+CLNE treatment changed the morphology and internal microstructure of the bacteriophage cells. Application of US+CLNE on purple kale leaves for 6 min significantly (P < 0.05) reduced the number of S. Typhimurium, but no changes in the physicochemical properties of the leaves were detected. This study elucidates the synergistic antibacterial mechanism of ultrasound combined with CLNE and provides a theoretical basis for its application in food sterilization.  相似文献   

12.
The objective of this study was to assess the effects of ultrasound-assisted thawing (UAT) on the quality of longissimus dorsi muscles from white yak meat (WYM). Ultrasonic power levels of 0, 200, 400, and 600 W (frequency of 20 kHz) were used to assist thawing. The thawing rate, meat quality, nutrient substances, volatile compounds, and microstructure of the WYM were determined. The results showed that ultrasonic thawing treatment reduced thawing times by 30.95–64.28% compared to control. The meat quality results revealed that the thawing loss, cooking loss, L* and b* values, and pH values decreased significantly while the a* value and cutting force increased significantly (P < 0.05) at the lower 400 W power level compared with the control. In addition, the free amino acid (FAA), mineral, and vitamin (especially water-soluble vitamins) contents were significantly (P < 0.05) increased with the ultrasound treatment. UAT significantly (P < 0.05) increased the content of volatile compounds, an effect that was highest in the UAT-400 W group. Partial least squares discrimination analysis (PLS-DA) showed that 2,4-heptadienal was critical in distinguishing the UAT groups from the control. When the ultrasonic power was lower than 400 W, the muscle cell area was significantly (P < 0.05) increased but decreased when higher power was used. Therefore, UAT improves the thawing efficiency and quality of frozen WYM, particularly at a power level of 400 W, and these findings have potential applications in the meat industry.  相似文献   

13.
The denaturation and lower solubility of commercial potato proteins generally limited their industrial application. Effects of high-intensity ultrasound (HIU) (200, 400, and 600 W) and treatment time (10, 20, and 30 min) on the physicochemical and functional properties of insoluble potato protein isolates (ISPP) were investigated. The results revealed that HIU treatment induced the unfolding and breakdown of macromolecular aggregates of ISPP, resulting in the exposure of hydrophobic and R–SH groups, and reduction of the particle size. These active groups contributed to the formation of a dense and uniform gel network of ISPP gel and insoluble potato proteins/egg white protein (ISPP/EWP) hybrid gel. Furthermore, the increase of solubility and surface hydrophobicity and the decrease of particle size improved the emulsifying property of ISPP. However, excessive HIU treatment reduced the emulsification and gelling properties of the ISPP. Meanwhile, HIU treatment changes the secondary structure of ISPP. It could be speculated that the formation of a stable secondary structure of ISPP initiated by cavitation and shearing effect might play a dominant role on gel strengthens and firmness. Meanwhile, the decrease in relative content of β-turn had a positive effect on the formation of small particle to improve emulsifying property of ISPP.  相似文献   

14.
Physicochemical properties and microstructure of gluten protein, and the structural characteristics of steamed bread with 30 % potato pulp (SBPP) were investigated by ultrasonic treatments. Results showed that 400 W ultrasonic treatment significantly (P < 0.05) increased the combination of water and substrate in the dough with 30 % potato pulp (DPP). The contents of wet gluten, free sulfhydryl (SH), and disulfide bond (SS) were influenced by ultrasonic treatment. Moreover, UV-visible and fluorescence spectroscopy demonstrated that the conformation of gluten protein was changed by ultrasonic treatment (400 W). Fourier transform infrared (FT-IR) illustrated that the β-sheet content was significantly (P < 0.05) increased (42 %) after 400 W ultrasonic treatment, and the surface hydrophobicity of gluten protein in SBPP increased from 1225.37 (0 W ultrasonic treatment) to 4588.74 (400 W ultrasonic treatment). Ultrasonic treatment facilitated the generation of a continuous gluten network and stabilized crumb structure, further increased the specific volume and springiness of SBPP to 18.9 % and 6.9 %, respectively. Those findings suggested that ultrasonic treatment would be an efficient method to modify gluten protein and improve the quality of SBPP.  相似文献   

15.
Food-borne methicillin-resistance Staphylococcus aureus (MRSA) has caused significant health threats and economic loss in livestock and poultry products. Garlic essential oil (GEO) is an effective antibacterial agent but presents strong instability and hydrophobicity. In this study, GEO in water nanoemulsion (GEON) with good stability was produced by emulsification technique of high-power ultrasound. Its antibacterial activity and underlying mechanism against MRSA isolated from retailed pork were investigated. Results showed that ultrasonic treatment significantly reduced the particle size of GENO from 820.3 to 215.0 nm as time increased from 0 to 10 min. Comparatively, GEON of 10 min ultrasound was more stable than other GEONs (0, 1, 5 min) during 30 d storage. It also displayed good thermal stability and relatively good ion stability (NaCl, MgCl2, and glucose). Antibacterial analysis showed that GEON (10 min) exhibited the best anti-MRSA activity among all GEONs, and the minimum inhibitory concentration of GEO in this nanoemulsion was 0.125 % (1.25 mg/mL). Treatment of GEON (10 min) significantly suppressed the cell proliferation of MRSA, which was mainly achieved by damaging the cell membrane as evidenced by membrane depolarization and considerable leakage of intracellular nucleic acids and protein. Laser scanning confocal microscope and scanning electron microscopy showed that treatment of GEON (10 min) significantly altered the membrane integrity and severely damaged the cellular membrane and structure. The present work illustrated that GEON produced by ultrasonic emulsification is a promising alternative to inhibit the contamination and spread of MRSA in livestock and poultry products.  相似文献   

16.
Basil oil (Ocimum basilicum) nanoemulsion was formulated using non-ionic surfactant Tween80 and water by ultrasonic emulsification method. Process of nanoemulsion development was optimized for parameters such as surfactant concentration and emulsification time to achieve minimum droplet diameter with high physical stability. Surfactant concentration was found to have a negative correlation with droplet diameter, whereas emulsification time had a positive correlation with droplet diameter and also with intrinsic stability of the emulsion. Stable basil oil nanoemulsion with droplet diameter 29.3 nm was formulated by ultrasonic emulsification for 15 min. Formulated nanoemulsion was evaluated for antibacterial activity against Escherichia coli by kinetics of killing experiment. Fluorescence microscopy and FT-IR results showed that nanoemulsion treatment resulted alteration in permeability and surface features of bacterial cell membrane.  相似文献   

17.
The effects of low-frequency ultrasonic pre-treatment in water/oil medium simulated system on the improved processing efficiency and quality of microwave-assisted vacuum fried potato chips were investigated. The water medium system (distilled water and 5% NaCl osmotic solution) and oil medium system (90 °C) were designed with different power levels of ultrasound to simulate the ultrasonic conditions. Results showed that the changes of moisture content, water loss, solid gain and dielectric properties of potato slices were facilitated by the ultrasonic treatment. LF-NMR analysis showed the binding force between the moisture and structure in the material was significantly (p < 0.05) weakened. The changes become greater with the increase of ultrasonic power levels. Microscopic channels and disruptions were induced on the microstructure by the ultrasonic treatment. The effective moisture diffusivity of vacuum fried (VF) potato chips was increased by about 56.2%-67.0% and 53.9% with the combination of microwave energy and the ultrasonic pre-treatment in water and oil medium simulated system, respectively. The oil uptake, hardness, shrinkage, total color change and water activity of vacuum fried samples were significantly (p < 0.05) decreased by the assist of microwave energy combined ultrasonic pre-treatment.  相似文献   

18.
In this study, high intensity ultrasonication (HIU) was employed as an efficient tool to improve the gel property and in vitro digestibility of marinated egg (ME). The effects of HIU treatment at 100 W and 200 W for a series of time periods (0.5 h, 1 h, and 2 h) on the textural profiles, structural changes, and microstructures were also studied. After HIU treatment, the springiness and gumminess of ME white were enhanced. The water holding capacity reached the highest point (66.6%) when 0.5 h 200 W HIU was used. It was observed that 100 W HIU led to the highest zeta potential (-12.0 mV) and hydrophobicity (175.35 μg) of ME, indicating a high degree of electrostatic repulsion prevented agglomeration. HIU treatment at 100 W affected the dynamic rheological behaviors by boosting non-covalent bonds, which maintains the gel network's homogeneity. Meanwhile, the decreasing formation of α-helix, in contrast to β-turn, altered the aggregation behaviors of egg white gel. The microstructure of the 200 W HIU treated samples had porous colloidal network structures, and the in vitro digestibility (>75%) was increased after HIU. This work demonstrated that HIU could be a green and cost-effective tool for processing the egg product with high quality.  相似文献   

19.
The present study was conducted to evaluate the effect of ultrasonic (US) treatment on chemical characteristics and antioxidant potential of pulps obtained from eight mango varieties indigenous to Pakistan. There was a significant (p < 0.05) effect of varieties and US treatment on chemical characteristics i.e. pH, acidity, TSS, vitamin C contents, total sugars (%), reducing sugars (%) and non-reducing sugars (%). Microstructure evaluation of pulp from all mango varieties showed deshaped middle lamella and cell wall of cells after 8 min of US treatment. At 4 min of US treatment as per shaped cell wall and middle lamella, the chemical characteristics and antioxidant potential were higher. The total phenolics (TP), flavonoids (TF) and total antioxidant activity (TAA) of pulp from most varieties increased significantly (p < 0.05) after US treatment for 4 min but decreased successively after each treatment i.e. 8 and 12 min. The maximum value (314.17 μg AAE/mL pulp) of DPPH was shown by pulp from Dosehri and the minimum (158.67 μg AAE/mL pulp) was found in pulp from Langra before US treatment. The DPPH values of pulp from most of the varieties increased significantly (p < 0.05) after US treatment for 4 min but decreased successively after each treatment but pulp from Langra showed increasing trend after 8 min of US treatment which decreased after 12 min of treatment. The total anthocyanin (TA) values of pulp from Chaunsa, Dosehri, Sindhri, Gulab Khas and Langra increased abruptly after US treatment for 4 min but decreased successively after subsequent treatment. The pulp from Desi, Anwar Ratol, Gulab Khas and Langra showed an abrupt decrease in TA after 8 min of US treatment. An increasing trend of values of total carotenoids (TC) was shown by pulp from all mango varieties after 4 min of US treatment but decreasing trend was observed with subsequent increase in time of US treatment.  相似文献   

20.
The present study aimed to investigate the impact of ultrasound-assisted tumbling (UAT; 20 kHz, 100, 300, 500 and 700 W) with different treatment time (30, 60, 90 and 120 min) on the diffusion and distribution of NaCl as well as the change of pork texture properties during curing. Results showed that in comparison with the single tumbling (ST), the NaCl content and the NaCl diffusion coefficient were increased along with UAT treatment (P < 0.05). The scanning electron microscopy and the energy dispersive X-ray analysis showed that UAT treatment changed the microstructure of pork which may facilitate the NaCl dispersion homogeneously. In addition, the moderate UAT treatment of 300 W with 60 min could significantly improve the tumbling yield, water-holding capacity and textural properties of pork compared with the ST treatment (P < 0.05). Meanwhile, in comparison with the ST group, protein extraction was considerably increased after UAT (300 and 500 W) treated for 120 min (P < 0.05). Our study demonstrated that UAT treatment could effectively promote the penetration and distribution of NaCl and improve pork meat quality via facilitating the extraction of meat protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号